
MODULAR PROGRESSION PROGRAMMING IN OPENMUSIC

Matthew Lane
Université de Montréal

matthew.lane@umontreal.ca

ABSTRACT

This paper presents the author's modular approach to
designing and using OpenMusic patches to produce multi-
dimensional progressions in instrumental music. Musical
passages (in one or several instruments) are passed from
process to process with tailored parameters for each
process and instrument, much like an assembly line
working on a single base material. Individual progressions
gradually change the passage in each instrument, altering
combinations of pitch, time, structure, and stochastic
elements, before passing the result to the next progression.
The organizing structure is presented, as is the
justification for this system and the guidelines for moving
between these patches and composing by hand. Examples
are presented in two compositions by the author (Sliding
Apart and Melodious Viscosity) that made use of these
patches.

1. INTRODUCTION

Computer-assisted composition (CAC) and specifically
the use of OpenMusic,1 is especially prevalent in my
music for the development of progressions. This applies
both to continuous progressions (one long line that
continues to change), and sequences (progressions where
the same idea is repeated while evolving continuously).
Sequences are essentially changing repetitions, and have
long been in use, but have until the 20th been mostly
confined to diatonic (and sometime chromatic)
modulations of the base element (model). In the 20th
Century, especially with Messiaen, rhythm begins to
change in a formal way as part of progressions.2

Eventually, ever element of the music became a possible
parameter for a progression, including pitch, rhythm,
articulation, timbre, speed and all their subcategories.

My compositional process general falls into the
following steps: creation of an original idea (seed),

1For information on the background of OpenMusic, see “Computer-
Assisted Composition at IRCAM: From PatchWork to OpenMusic” in the
Computer Music Journal by Assayag et al. [1]

2When referring to rhythm changing, it is in a gradual and clearly
directed way. It is true that rhythms in Bach, for example, occasionally
change during sequences, but almost never in a consistent, directional,
and quantifiable way. See The Technique of My Musical Language
(Chapters III-IV by Olivier Messaien for more on Messaien's rythmic
processes. [6]

creation of related ideas, triage of ideas, development of
remaining ideas, reinterpretation of developed ideas,
formal organization, and linking. I have used CAC in
nearly each of these processes, but the present focus will
be on development. Developing different parts of a piece
using the same patches, with the distinct traces and
colours they leave on the music, helps to create unity
between sections, and shapes the aesthetic of the piece.

The document will refer throughout to two pieces:
Melodious Viscosity, a wind quintet written for the Brevà
ensemble; and Sliding Apart, a quintet for flute, clarinet,
piano, violin, and cello written for a reading by the Meitar
Ensemble.

2. THEORY, PROGRAMMING, AND
INTERPRETATION

2.1. Programming structure

Because progressions and sequences invariably play a
role in every one of my pieces, to remain useful and
portable, patches have to be flexible and rearrangeable,
with sufficient parameters for control and variety, but with
a simplicity to render them efficient. For this reason,
modular patches are used, each one for a different
treatment, and applied in sequence. In some cases, order
of application made no difference, such as with a patch
that progressively changes the pitch of all the notes and
another that removes half the notes, but in other cases,
order is crucial, such as with a patch that stretches time in
places and another that randomizes the attacks based on
temporal location.

Figure 1 shows the modular framework of this system.
The music is passed from an original motive or note at the
top to the complete altered progression at the bottom. At
the beginning, a Multi-Seq class (A) contains an imported
motive created in XML or MIDI. The
createbasepolypattern patch (B) then multiplies this
motive, creating and joining any number of copies of it, to
later be modified and create a sequence. From here, the
list of chord-seq classes is passed to
applytoseveralscoreobjects (C), which can be attached to
any lambda function (a function that can be passed as an





For example, the same progression could occur many
times, with each transposing to a different tonal area,
possibly over a different period of time.

2.4. A fork in the road: Further programming or
interpretation of data into music

The output data usually provides a clear-cut
progression with an obvious direction, but like some ideas
developed using CAC, it sounds overly mechanical played
raw. Here, the composer is left with a choice: interpret the
data and begin to compose with it by hand, or develop
further processes in OpenMusic to render data closer to
the musical intention. It is crucial to understand where and
why the data falls short of being effective music, whether
for the purpose of improving the programming process or
simply for the sake of efficiently pinpointing what needs
fixing by hand. While this discussion could be the work of
a small book, below are a few main areas of interest that
have come up in these patches.

One of the principal difficulties relates to randomness.
What we perceive as randomness and seek occasionally in
our music is rarely true randomness, but rather even
distribution with a degree of randomness. Four voices
stacked on top of one another are occasionally bound to
line up, creating a synchronicity that our ears perceive as
ordered. In the same way, in a sequence of random note
values, there will occasionally be several of the same in a
row, creating an ordered impression where there is
technically no order.5 In many cases in OpenMusic,
several evaluations are required before obtaining a result
that sounds truly random. One possibility to explore in
future patches is using constraints to control the amount of
repetition of an element in a random sequence or to
control/restrict the output of several elements that follow a
pattern (for example, four random numbers that result in
2-4-6-8).6 Another possible approach to this is avoiding
randomness altogether, and instead creating sequences
with a random sounding distribution, and apply Markov
chains to produce variants, therefore lowering the
probability of undesirable patterns. Currently, I have dealt
with this issue in two steps. First, the patch is evaluated
several times to find a result that sounds appealing.
Secondly, the result is reworked by hand, altering rhythms
or sequences by ear or by searching through the preceding
material for patterns/notes/note-values that have not yet
appeared.

A second issue is that progressions produced in
OpenMusic generally imply an explicit direction and stick
to it. Once a progression becomes too predictable,
however, it loses some of its dramatic value. Even
randomness, which adds a degree of instability, can itself

5See reference [5]
6Several constraints programming systems exist for OpenMusic,

notably OMClouds. For more on this approach, see C. Truchet et al.
“OMClouds, a heuristic solver for musical constraints”. [7]

become predictable. One approach to dealing with this is
through interruptions in the progression. As of yet, these
are most often added after leaving OpenMusic. Recently,
however, I have begun exploring the possibility of
incorporating them in patches. Randomly (or partially
controlled random) placed freezes, pauses, or other
processes, such as flashbacks to previous sections,
occasional scrubbing backwards and forwards in the
sequence, or elements as simple as sudden octave
transpositions are all possible to do in OpenMusic. The
formal layout for this approach will be a function that that,
using several coefficients or parameters, determines
segments or locations throughout the passage for these
ideas to be applied, and then a separate lambda function
that actually applies them.

The current process for composing these interruptions
primarily involves listening. As soon as I clearly
recognize the intention of a progression, it means there
isn't long to change it before it loses its musical interest.
From there, the question is whether the progression should
be interrupted and continued again, interrupted and
restarted, or outright stopped. When a progression is
returning for the 2nd or 3rd time, the third option is often
best. Next, the nature of the interruption comes into
question. It may be a slightly altered continuation of the
progression already in progress (for example, an upward
scale that momentarily doubles in speed or becomes an
upwards glissando). It may also be a sort of stop or break,
such as a freeze or a silence. It may also refer to
completely different material, although usually material
that has already been introduced.7 Finally, only once the
first interruption is written, is it possible to move forward
and determine where and if another interruption is needed.
To be musically useful, this process must take into account
the material and time that precedes it.

A third shortcoming is that the processes' directions are
primarily linear, or at the very best, exponential. Both are
easily predictable by the ear, and asides from
interruptions, which tend to create a stop or a deviation
from the progression, other approaches should be
explored. The most practical, especially in the context of
OpenMusic, would be to give the functions BPFs8 instead
of two-point line or curve segments to interpret. This
would allow more freedom, and also the possibility of a
more organic, hand-composed element before the final
data output. This will be incorporated in future patches.

Regardless of how far the patches go, however, the data
rarely amounts to music. My preferred solution to this is
reinterpretation. The means are varied, but the principle is
the same: become a musical performer and improvisor of
one's own data. In some cases, this is playing through the
passage on an instrument and recording or transcribing

7Note that these are the methods of dealing with CAC output data that
I use the most in my aesthetic, but many others exist.

8BPFs are “breakpoint functions”, a 2-dimensional graph with
increasing X- (or time) values, and user-controlled Y-values. See the
documentation for more information. [3]



what is played, especially the rhythm. This opens the
possibility to move back and forth in time, add occasional
notes, or alter harmonies where the ear suggests it. In
cases with many lines undergoing processes
simultaneously, I will take what strikes me as the leading
line, reinterpret this, and then rebuild the other lines
around this one.

Some computer-assisted tools for reinterpreting the
passages are also useful, including scrubbing and
transcribing the result in a notation program or sequencer,
or simply tapping the tempo or chord changes and
retranscribing the new rhythm. These are not, however,
recipes to successful reinterpretation and require
discretion to determine their utility.

Most importantly about the reinterpretation is the time
and “space” required away from OpenMusic.
Programming for CAC often involves laboriously going
over the same passages many times for hours or days on
end. Otherwise uncomfortable passages become familiar
and comfortable sounding, and undesired rough edges
become softened in our memory. This is why, for me, it's
crucial to return to the output data several days after the
evaluation, and ideally to return to it in a new context. The
time allows me to rehear the musical ideas in a fresh way
and to be surprised, a crucial element to my music. Either
playing it on an instrument, in a sequencer, or in one's
head can work, but returning to OpenMusic must be
avoided. When using OpenMusic to review the material,
the tendency is to resolve musical problems with

irrelevant whether a composer creates a patch to rectify a
problem passage or finally composes it by hand: once the
patch is created, it means that the composer understands
perfectly the cause and solution to the problem in small
steps. Consequently, should a composer never even use a
note of data taken from OpenMusic, the process of
programming these progressions becomes inherently
valuable. And while CAC programming may be pushed
further to interpret our musical ideas, they remain our
musical ideas, and not the computer's.

3. THE PATCHES AT WORK IN NEW
COMPOSITIONS

3.1. Use and interpretation in Sliding Apart

CAC was implemented in nearly every section of this
piece. Between sections of the piece, the main fast theme
breaks down by dying and fading away in several
dimensions. As soon as the motive begins to become
obsessive, it breaks down rhythmically, slowing down at
the same time, and putting the different lines out of sync.
Certain notes go missing from the pattern, and the pitch
slowly drops. Certain elements are fixed in this
progression, while others have stochastic influences. The
musical goal of this section is to create a sense of sudden
falling apart in order to break away from a section that is
otherwise extremely rigid and rhythmically precise.



10A simplification of this patch is seen in Figure 4.
11The instrument order is flute, clarinet, piano, violin line 1, violin

line 2, cello line 1, cello line 2. This is visible in Figure 2.



Randomizetimegradient takes four arguments: the amount
of randomness in possible millisecond deviation at the
beginning, the amount at the end, and the start and end
points for the process. Here, for example, the process
begins 10% of the way in and finishes half way through.
Time in this function, does, however remain linear,
meaning notes and their endings still retain the same
order. The beginning and end times of the passage as a
whole are also unchanged, ensuring that other processes
can be used for the duration after this process is complete
(the final 50%) without worrying that the notes have been
altered. Gradualnoteremoval also contains a random
element, removing more and more notes, but not
necessarily the same ones on each evaluation, meaning
different evaluations render different material from which
to choose. Both these processes contribute to the sense of
falling apart in the lines. Note that randomizetimegradient
applies much more strongly to the strings (the final
numbers), while gradualnoteremoval is not at all applied
to the strings.

The interpretation of data for this piece involved
multiple steps of reinterpretation. The major changes from
the output data were the inclusion of an interruption and
another process (also generated in OpenMusic) cross-
fading with the ongoing progression. The interruption is a
combination of two events: a freeze in the wind
instruments and piano, while the strings continue the
progression in a way by their downwards fall (Figure 5, m.
32). The cross-fading process, a rising, somewhat spectral
piano chord progression, helps offset two problems in the
first progression. It counteracts the loss of energy created
by the falling apart progression, and it distracts from the
increasing predictability of where the first progression is
headed.

3.2. Use and interpretation in Melodious Viscosity

The wind quintet Melodious Viscosity also uses CAC in
several places, primarily for progressions, but this
repeating progression is the most salient example, and a
relevant look at how many of the same processes from
Sliding Apart can be used to different ends. This passage
is building up towards a climax, and so many of the same
processes as in Sliding Apart can be seen in reverse. There
is also a process within a process, as the concatenated base
segments of material also each undergo a process of de-
randomization, hence the importance of the patch
CreateBasePatternWithMultipleEvaluations, which allows
the random element to work to its full potential, creating
slightly varied instances before submitting them to the
global chain of processes.

The most important process is gradualNoteRemoval,
although this time in reverse, and again in conjunction
with adjustDurations in order to fill out the space emptied
by the removal of notes. Each instrument is given separate
parameters for when to begin coming in (the bassoon

undergoes no change in this process). There is also an
acceleration treatment through the rhythmextendcompress,
but in the end I deemed it simpler for the players to read
an accelerando in the score, though the OpenMusic
process helped me in gauging the efficiency of the process
as a whole.

A crucial part of the interpretation of results in this
piece was many evaluations. After taking many
evaluations, bars were chosen from different sets of results
that filled certain auditory criteria, including a desire for a
feeling of evenly distributed randomness, attack locations
that didn't sound like errors, and interesting harmonic
coincidences. Then a partial reinterpretation was done,
primarily of what I perceived to be the leading lines
(bassoon, but also often on the highest-pitch line present).
The bassoon bass line's first notes of several measures
were altered to make the passage feel less harmonically
static. Finally, touches of colour were added: occasional
harmonic contributions by instruments where the texture
was too thin, and occasional performance techniques to
momentarily draw attention away from the progression.
This progression occurs in two section of the piece, and
the CAC framework allowed the creation of two
independent, but closely linked, progressions.

Figure 5: Melodious Viscosity (score segment)




