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ReSpect is a free software library performing the real-
time synthesis of spectral sounds. The origin of this
library is an additive synthesis module, implemented
using software oscillators and presented in Paris at
the JIM’99 conference. On the top of this efficient syn-
thesis module were added high-level functionalities
such as a psychoacoustic model and a spatialization
system, all working in a spectral representation. Re-
Spect accepts several spectral sound models as input.
Thus, this library can be used for research in the spec-
tral modeling field, as well as for teaching purposes,
since the sources are available. Moreover, its mod-
ular approach allows to enable or disable a specific
module, which is extremely useful for pedagogy. Its
final goal is to serve as a software tool to be included
in bigger projects. The ReSpect library is used for ex-
ample in the Dolabip project, a multi-field project for
developing early-learning games for electro-acoustic
music at school. It is also used in other computer
music software tools of the SCRIME, more oriented
towards the composition of electro-acoustic music.

1. INTRODUCTION

The original ReSpect (“Re(spect) Spect(rum)”) project
started in year 1997. It was implemented in 1998–
1999 as a GNU/Linux kernel module [1], and was
performing the additive synthesis of spectral sounds
in a very efficient way, using very fast software oscil-
lators presented at the JIM’99 conference [2].

At this time, it was only an efficient synthesis mod-
ule, but without any high-level functionality. This
original module can now be regarded as the synthe-
sis (SYN) module of the actual library (Figure 1).

Then the SAS (Structured Additive Synthesis) [3,
4] library was designed in year 2000 on the top of Re-
Spect in order to play SAS sound sources. This library
is used for example in the Dolabip project [5], a multi-
field project for developing early-learning games for
electro-acoustic music at school.

A psychoacoustic model (PSY) was added to the
library in 2001 [6]. A resampling module (RS) was
added in 2002. The spatialization (SPA) module was
initiated the same year. From 2003–2004, the library
was not seriously maintained, although the spatial-
ization module got enhanced by student projects.

The development has started again in 2006, and
the new version should be released in 2007. But for
now, only the last version of the SAS library is avail-
able for download 1 , with limited implementations
of the spatialization (SPA) and synthesis (SYN) mod-
ules, and no event manager (EM) module, see below.

Now, the ReSpect project is back to its original
name, and is now a free software library – distributed
under the terms of the GNU General Public License –
that accepts both SAS (structured additive synthesis)
or spectral (classic additive synthesis) frames as in-
put, and generates temporal frames as output to the
sound card. More precisely:

1. Partials are extracted from either SAS or spec-
tral (additive synthesis) frames;

2. Once the partials are known, their parameters
are resampled by the resampling (RS) module,
see Section 3;

3. Each sound source can be played at any posi-
tion, using the spatialization (SPA) module, see
Section 6;

4. The parameters of the oscillators are updated
using an event manager (EM) module, see Sec-
tion 3;

5. A psychoacoustic (PSY) module then decides
which partial is audible and must be synthe-
sized, see Section 5;

6. In the end, the additive synthesis (SYN) mod-
ule computes the sound wave associated to the
partials, in a very efficient way, see Section 4.

An important feature of the ReSpect library is that
any of these modules can be disabled, except SAS and
SYN. This is extremely useful for teaching purposes
(e.g. for showing the psychoacoustic model), and
also to save computation time (e.g. for applications
where spatialization is not necessary).

The end-user functionalities are very simple, and
can be summarized by: playing spectral sounds at
any position, in a very efficient way. Thus ReSpect
can be useful for any application where real-time ad-
ditive synthesis is needed. The library API is also

1 http://www.scrime.u-bordeaux.fr/logiciels/libsas
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Figure 1. Diagram of the ReSpect library.

very simple, but not detailed here since this API will
be part of the user manual of the new version of Re-
Spect, to be released soon.

After a brief introduction to the spectral and SAS
sound models in Section 2, we give some technical in-
sights into the high-level functionalities of the library.
With these insights and the source code, computer
scientists should be able to fully understand the soft-
ware library. First of all, the way ReSpect handles the
sound parameters is rather original, and is thus de-
tailed in Section 3. Then, we describe the three main
modules dealing with fast additive synthesis (SYN),
psychoacoustics (PSY), and spatialization (SPA) in
Sections 4, 5, and 6, respectively.

2. SOUND MODELS

Spectral sound models provide general representa-
tions for sound well-suited for intuitive and expres-
sive musical transformations (see [7, 8, 4]).
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Figure 2. The frequencies (top) and amplitudes (bot-
tom), as functions of time, of the partials of the sound
of an alto saxophone, during 1 second.

2.1. Additive Synthesis

Additive synthesis (see [9]) is the original spectrum
modeling technique. It is rooted in Fourier’s theo-
rem, which states that any periodic function can be
modeled as a sum of sinusoids at various amplitudes
and harmonic frequencies. For stationary pseudo-
periodic sounds, these amplitudes and frequencies
continuously evolve slowly with time, controlling a
set of pseudo-sinusoidal oscillators commonly called
partials. This is the well-known McAulay-Quatieri
representation [10] for speech signals, also used by
Serra and Smith [7, 11] in the context of musical sig-
nals. The audio signal s can be calculated from the
additive parameters using Equations 1 and 2:

s(t) =

P∑
p=1

ap(t) sin(φp(t)) (1)

φp(t) = φp(0) + 2π
∫ t

0
fp(u) du (2)

where P is the number of partials and the functions
fp, ap, and φp are the instantaneous frequency, am-
plitude, and phase of the p-th partial, respectively.
The P pairs ( fp, ap) are the parameters of the addi-
tive model, and represent points in the frequency-
amplitude plane (see Figure 3). This representation
is used in many analysis / synthesis programs such
as AudioSculpt [12], SMS [11], or InSpect [1].

2.2. Structured Additive Synthesis

However, the models based on additive synthesis
are extremely difficult to use directly for creating
and editing realistic sounds. The reason for this dif-
ficulty is the huge number of model parameters –
controlling many sinusoidal oscillators – which are
physically valid but only remotely related to musical
parameters as perceived by a listener.
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Figure 3. Spectrum of an harmonic sound at a given
time t. The sound consists of 12 partials (dots, with
dashed lines). The frequency F and color C (solid
line) parameters of the SAS model are also indicated.

Structured Additive Synthesis (SAS) [3, 4] is a
spectral sound model that keeps most of the flexi-
bility of additive synthesis while addressing these
problems. It imposes constraints on the additive pa-
rameters, giving birth to structured parameters as
close to perception and musical terminology as pos-
sible, thus reintroducing a perceptive and musical
consistency back into the model.

SAS consists of a complete abstraction of sounds
according to only four physical parameters, functions
closely related to perception. We note (A,F,C,W) a
sound in the SAS model. At a given time t, these pa-
rameters constitute an SAS frame (see Figure 1). The
first two parameters – amplitude A and frequency F
– are one-dimensional, functions of time only, while
the two others – color C and warping W – are two-
dimensional, functions of both frequency and time.

In the ReSpect library, the A and F parameters are
scalars, whereas C and W are envelopes. The SAS
module of the library (see Figure 1) generates the
partials from the SAS parameters. The number of
partials to generate in the spectrum range is:

P(t) =
Fs

2F(t)
(3)

where Fs is the sampling frequency.
The main difficulty for the SAS module is then to

kill old partials (if P has decreased) or to give birth
to new partials (if P has increased), while respecting
the protocol for the spectral frames (see Section 3).
Indeed, computing the additive parameters for the P
partials from the SAS parameters is as easy as:

fp(t) = W(pF(t), t) (4)
ap(t) = A(t) C( fp(t), t). (5)

3. CONTROLLING THE SYNTHESIS

The synthesis parameters are slow-varying functions
of time. More precisely, these functions can be re-
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Figure 4. Variation of the amplitude of an oscillator
and the resulting audio signal. Between two parame-
ter changes, some interpolated values are computed
(8 on the top of this figure). And between two in-
terpolated values, many samples are computed (4 on
the bottom of this figure, but 64 in ReSpect). . .

garded as (control) signals which are band-limited
in frequency with a maximal frequency under the
lowest audible frequency, that is ≈ 20 Hz (see [8]).

We do not assume a linear variation of the pa-
rameters. We intend to do even better to obtain a
high quality with a low rate for the parameter flow.
Considering the parameter values as the samples of a
band-limited signal allows us to reduce the frequency
of the updates of the parameter flow.

Since the maximal frequency is under 20 Hz, in
theory sampling the parameters 40 times per second
or so is sufficient (Nyquist’s condition). In practice
we use a value of about 86 times per second, in or-
der to be able to encode fast variations for partials
with high frequencies. Psychoacoustic experiments
indeed show that the maximal frequency of the con-
trol signal is not a constant, but a function propor-
tional to the frequency of the controlled signal. More
precisely, to avoid modulation phenomena, the max-
imal frequency of the control signal is about 0.35% of
the frequency of the controlled partial.

The default sampling rate of ReSpect is Fs = 44100
Hz (CD quality). ReSpect then asks for sound pa-
rameters each 512 samples (thus at ≈ 86 times per
second). This is sufficiently fast for the correct han-
dling the control signals, and sufficiently slow not too
overload the system by a high parameter flow. How-
ever, the period between two parameter changes (512
samples) is too large for the parameters to be consid-
ered as constant within this time interval. ReSpect
then computes intermediate parameter values, ev-
ery 64 samples. The consequence is an upsampling
of the control signals by a factor 8 (see [13] and Figure
4). Then, during the 64 samples, the sound is con-
sidered as stationary (constant parameters) and the
fastest synthesis algorithms can be applied, without
considering any change of parameters.

The current version of ReSpect is more flexible and
has an event manager (EM) module, which uses an
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Figure 5. Update events for 3 partials (dash-dotted,
dashed, and solid lines). For each partial, they occur
here at each p = 1/2 period of the sinusoid of the
partial, possibly between two output samples.

optimized priority queue (see [14]) and allows the
oscillators to take specific actions at scheduled times.
Between two events, no parameter change can occur,
and the synthesis algorithms can generate the output
samples in a very efficient way. Events are attached
to oscillators, and there are events of different kinds:

• change of synthesis parameter (see Figure 4),
possibly at optimal times (see Figures 6 and 7);

• update of the polynomial generator
(every 1/2 period, see Figure 5 and Section 4);

• reset of the digital resonator or incremental
generator (depending on the synthesis method,
see Section 4), to avoid numerical imprecision
and drifts.

This section then details three important points
about the update of the synthesis parameters. The
first point is the way spectral frames (see Figure 1)
must be input. The second point is the way the syn-
thesis parameters can be computed at any time, and
not necessarily at times where they were input by the
user. The third point shows that is then possible to
change the parameters of the oscillators at strategic
times, to avoid discontinuities (clicks).

3.1. Spectral Frame Protocol

For each spectral source (additive synthesis, see Sec-
tion 2), ReSpect maintains an ordered list of the ac-
tive partials currently synthesized. Each partial p is
represented by a pair of floating point numbers in
double precision, ( fp, ap). Recall that fp and ap are
respectively the frequency and amplitude of the p-th
partial. The number of synthesized partials can vary
with time. When a partial dies, the special (0, 0) pair
is placed at its position in the list of partials. Af-
ter that, the partial does not exist anymore. When
a new partial appears, its is simply appended to the
list of partials. When the pairs are send to ReSpect
as input, the following protocol must be respected in
sequence:

1. For each partial p, write its ( fp, ap) pair.
If a partial dies, the (0, 0) pair is written;

2. For each new partial, write its pair;

3. Write the (−1,−1) end-marker pair.

This steps should be repeated for each frame.
This protocol applies to spectral frames only. For

SAS frames, the user inputs the parameters in a more
natural way, and then the SAS module has to deal
with this protocol when generating the partials.

3.2. Resampling the Parameters

The control parameters are sent only every 512 sam-
ples of the output signal. However, synthesis pa-
rameter change events can occur at any time. Thus,
we must be able to reconstruct the parameter value
at any time, and we do this in the RS module (see
Figure 1) by reconstruction of the control signal.

As mentioned in [15], this reconstruction should
be done in theory using a convolution with a recon-
struction filter whose impulse response would be a
(windowed) sinus cardinal – sinc – function. Us-
ing a convolution would severely degrade the per-
formance of our synthesis algorithm. We propose
instead to use an approximation of the ideal recon-
struction, and more precisely to use cardinal splines.

The principle of the splines is to use polynomials
to approximate or interpolate functions. We are inter-
ested in interpolation splines for uniform reconstruc-
tion. The cardinal splines are interpolating uniform
splines widely used in computer graphics [16]. The
s signal can be locally reconstructed from its samples
using equation:

s(kTs + t) =
3∑

i=0

ci(t) s[k − 1 + i] (0 ≤ t < 1) (6)

where Ts is the sampling period of the (control) sig-
nal – indicating times where the signal values are
know – and the ci functions are, for cubic splines, the
following Hermite blending functions:

c0(t) =
1
2

(−t + 2t2
− t3) (7)

c1(t) =
1
2

(2 − 5t2 + 3t3) (8)

c2(t) =
1
2

(t + 4t2
− 3t3) (9)

c3(t) =
1
2

(−t2 + t3) (10)

Cubic cardinal splines in conjunction to the well-
known Horner method for the evaluation of the poly-
nomials result in a very efficient resampling tech-
nique with a sufficient precision. This reconstruction
turns out to be of very good quality. The reason for
this quality is that these Hermite functions constitute
indeed a piecewise-polynomial approximation of the
impulse response of a reconstruction filter (see [8]).



Figure 6. Changing the amplitude either when the
signal is minimal (left) or maximal (right). It appears
that the left case is much better, since it avoids am-
plitude discontinuities (clicks).

Figure 7. Changing the frequency either when the
signal is minimal (left) or maximal (right). It appears
that the right case is better, since it avoids derivative
discontinuities (clicks).

3.3. Avoiding Discontinuities

In [2] we indicate the best times in a period to change
the parameters of a partial, as illustrated by Figures
6 and 7. The best moment to change the amplitude is
when the signal is minimal, to preserve the continu-
ity of the signal. And the best moment to change the
frequency is when the signal is maximal, to preserve
the continuity of the signal derivative. The param-
eters are thus updated at the right moment to avoid
clicks in the sound. This moment is different for each
partial, depending on its frequency.

4. FAST ADDITIVE SYNTHESIS

In order to efficiently synthesize many sinusoids si-
multaneously, Freed, Rodet, and Depalle propose in
[17, 18] to use the inverse Fourier transform, pro-
vided that the control parameters vary extremely
slowly. The gain in complexity is when the number
of oscillators is large in comparison to the number of
samples to compute at each frame. However, the con-
trol of the synthesis parameters lacks suppleness. On
the contrary, the ReSpect library is oscillator-oriented
to allow a fine control of the synthesis parameters
over time (see Section 3).

The most straightforward way to calculate a par-
tial contribution is then to apply Equation 1, using the
sine function. But it consumes a lot of computation
time. Other techniques are possible.

4.1. Digital Resonators

The digital resonator method [19, 20] computes the
samples of each separate partial with an optimal
number of operations. In this method, the sinu-
soidal function is calculated with an incremental al-
gorithm that avoids computing the sine function for
every sample. We proposed the use for fast additive
synthesis of the digital resonator with floating point
arithmetic in [1, 2]. For each partial the resonator
is initialized as Equation 12 shows, with Fs the sam-
pling rate of the synthesis, a, f , andφ respectively the
amplitude, frequency, and initial phase of the partial,
and ∆φ the phase increment. The incremental com-
putation of each oscillator sample requires only 1
multiplication and 1 addition:

s[n + 1] = C · s[n] − s[n − 1] (11)

with


∆φ = 2π f/Fs
C = 2 cos(∆φ)
s[0] = a sin(φ0)
s[1] = a sin(φ0 + ∆φ)

(12)

This algorithm is optimal in a sense that 1 multi-
plication with no addition will lead to a geometric
progression, whereas no multiplication with 1 ad-
dition will lead to an arithmetic one; none of these
progressions being a sine function.

Although the complexity of the digital resonator
method is proportional to P × Fs, in practice it can
compete with the FFT−1 [21] or even be more efficient
[8], depending on the implementation details and
optimizations, on the computer used, as well as the
number of partials P.

Numerical stability can be a problem for low-
frequency and low-amplitude partials. In practice,
the low-amplitude partials are not problematic since
they are inaudible and thus removed by the psychoa-
coustic model (see Section 5).

For low-frequency partials, we propose to use an-
other method, more stable and even more efficient.

4.2. Polynomial Generator

We propose in [14] a new synthesis method whose
computation time depends mainly on the mean of
the frequencies of the partials. Perhaps surprisingly,
we have shown that the complexity of this method
does not really depend either on the number of the
partials or on the sampling frequency, but rather on
the mean of the frequencies of the partials. As a
consequence, this method is particularly efficient for
low-frequency partials.

The idea is to replace all the P sine functions of
Equation 1 by a single polynomial generator of de-
gree d. Our method consists in first calculating a
set of polynomial coefficients for each partial. The
values from polynomials computed with these co-
efficients approximate the signal of the partial on a
part p of its period. The classic approach would eval-
uate the polynomial associated to each oscillator, and



then sum up the results, which would be quite ineffi-
cient (far less efficient than the digital resonators, see
above). The idea is yet to sum the coefficients in a
polynomial generator, then to evaluate the resulting
polynomial only once. Indeed, summing polynomi-
als leads to another polynomial of the same degree.
The sound samples can be computed from this sin-
gle resulting polynomial, with a fairly low degree –
independent of the number of partials to synthesize.

4.2.1. Partial Approximation

The time-domain signal generated by each partial is
defined by a sine function. We propose to approxi-
mate this function by a polynomial. To get the poly-
nomial coefficients that can approximate any partial
of a sound, we decide to first approximate a unit (si-
nusoidal) signal u with amplitude a = 1, frequency
f = 1, and phase φ = 0.

We have to choose a part of the period where we
will do the approximation. We call this part the va-
lidity period p of the polynomial coefficients. Thus,
if we approximate a half period of u, then p = 1/2.

For a given polynomial degree d, we propose to
find the polynomial coefficients that maximize the
Signal-to-Noise Ratio (SNR) between the target unit
signal u and its polynomial approximation U, the
noise being the approximation error. These poly-
nomial coefficients also have to respect other con-
straints to maintain a piecewise continuity. For ex-
ample, with a 2-degree polynomial U and p = 1/2,
as well as a C1 continuity, we show that we can use
alternately U1 for a first half period and U2 for the
second: {

U1(t) = a1t + a2t2

U2(t) = −a1t − a2t2 (13)

with
{

a1 = 240/π3

a2 = −480/π3 (14)

Also note that, in this case, switching from U1 to U2
is very efficient.

The coefficients we compute define a unit polyno-
mial U by validity period. When the unit polynomial
is found, every partial can be approximated from it.
In the general case of a partial p with amplitude ap,
frequency fp, and initial phase φp, the approximating
polynomial Pp is then given by:

Pp(t) = apU
(

fpt +
φp

2π

)
(15)

4.2.2. Incremental Evaluation

To avoid the problem of computing a polynomial
with large time values, leading to numerical impre-
cision, we propose to use the Taylor’s theorem to
compute it. The polynomial can be evaluated at ev-
ery instant t0 + ∆t by using its value and the values
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Figure 8. Diagram of the synthesis (SYN) module.

of its derivatives at a preceding instant t0:

Pk(t0 + ∆t) = Pk(t0) +
d∑

i=k+1

∆i−k
t

(i − k)!
Pi(t0) (16)

where Pk is the k-th derivative of the polynomial func-
tion (P0 being the polynomial itself). The number of
necessary values depends on the degree of the poly-
nomial (e.g. three values with a 2-degree polyno-
mial).

We have to directly compute the first value of the
polynomial and of its derivatives. Then, to compute
incrementally each of the following values, we use
Equation 16 with a step ∆t corresponding to the time
between two time events. A time event is either the
time of a sound sample or of a scheduled update of
the coefficients. When time reaches or exceeds the
validity period we have chosen, the coefficients are
updated, and the incremental algorithm goes on with
the new coefficients.

4.3. Hybrid Method

In the ReSpect library, we tune the trade-off between
complexity and stability for our synthesis method on
the fly, by combining the advantages of the digital
resonator and polynomial generator methods, since
these methods both manipulate oscillators. For this
hybrid method, the idea is, for a given partial, to use
either the digital resonator or the polynomial approx-
imation depending on the frequency of the partial.
For low frequencies, the polynomial generator will



be preferred. On the contrary, for high frequencies,
the digital resonator will be used.

The hybrid method schedules update times as
events in the event manager (EM) module (see Figure
1 and Section 3). Whereas the digital resonators only
need events for amplitude and frequency changes
(that can be scheduled at optimal times, see Sec-
tion 3), the polynomial generator requires the up-
date times of the polynomial approximations of the
partials, scheduled when the validity period p of an
oscillator is ending.

Changing parameters of partials with the polyno-
mial method consists in changing the polynomial co-
efficients of an oscillator when this oscillator must be
normally updated, because of the end of its validity
period. Thus, this change does not need more com-
putation time than without changing the parameters.
The best case is with the validity period p = 1/4. In
this case we can update the parameters at the best
moments we described before (see Section 3) for the
frequency (Figure 7) or the amplitude (Figure 6).

At each update time, for the concerned oscillator,
the decision of switching from one synthesis method
to the other can be made. And since at this update
time the amplitude, frequency, and also phase of the
oscillator are known, the switch of method is really
straightforward.

5. PSYCHOACOUSTIC MODEL

The ReSpect library can take into account psychoa-
coustic phenomena (threshold of quiet and frequency
masking, see [22]) in order to on-the-fly ignore in-
audible partials during the synthesis process, thus
saving a lot of computation time.

In the PSY module (see Figure 9), we first decide
whether a partial can or cannot be detected by a lis-
tener in a noiseless environment. Then, if it turns out
that this partial could be heard, we check if it is not
masked by some other stronger partial.

5.1. Perceptive Scales

Human beings perceive the parameters (amplitude
and frequency) of the partials on logarithmic scales.

5.1.1. Decibel Scale

The decibel (dB) scale is commonly used to represent
the volume. The relation between the volume in dB
and the linear amplitude is given by Equation 17:

V(a) = 20 log10

( a
A0dB

)
. (17)

If we consider that the maximal amplitude (1.0 in the
linear scale) should correspond to a volume of 120
dB in order to match the standard dB SPL (Sound
Pressure Level) scale, then we set A0dB = 10−6 corre-
sponding to an acoustic pressure of P0dB = 2 · 10−5

PSY

oscillators
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amplitude
threshold

sort

frequency
masking

oscillators
R

Figure 9. Diagram of the psychoacoustic (PSY) mod-
ule, reducing the number of partials from P to R ≤ P.

Pa (Pascals). Anyway, amplitude and pressure being
proportional, it is just a matter of translation of the
volume origin (0 dB) in the logarithmic scale.

5.1.2. Bark Scale

A very convenient scale for representing frequencies
is the Bark scale (after Barkhausen), which is very
close to our perception [22]. Equation 18 allows us
to go from the Hertz scale to the Bark scale:

B( f ) =
{

f/100 if f ≤ 500
9 + 4 log2( f/1000) if f > 500 (18)

5.2. Threshold of Hearing

Human beings can hear frequencies in the range of
20 Hz to 20 kHz approximatively, but the sensibility
threshold in amplitude Sa is a function of frequency
(see Figure 10). Equation 19 provides us with a good
approximation for this threshold. Partials with vol-
umes below this threshold will not be heard, and thus
can safely be ignored at the synthesis stage.

Sa( f ) =
{

3.64( f/1000)−0.8
− 6.5e−0.6( f/1000−3.3)2

+10−3( f/1000)4

(19)

5.3. Frequency Masking

Physically, the addition of two signals of the same
amplitude is ruled by a nonlinear addition law and
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Figure 10. Threshold of hearing Sa.

gives a maximum of +6 dB. However, from a per-
ceptive point of view, there is a modification of the
perception threshold for a sound m (masked sound)
when it is played together with a louder sound M
(masking sound). This phenomenon is known as fre-
quency masking. Consider the case of M and m being
two sinusoids of frequencies fM and fm, and ampli-
tudes aM and am, respectively. Assume that aM > am.
If fm is close to fM, the sound m is masked by the
sound M and thus becomes inaudible.

5.3.1. Masking Model

As a first approximation we can consider that the
masking threshold is close to a triangle in the Bark-dB
scales. After Garcia and Pampin [23], we use a simple
masking model to evaluate the Signal-to-Mask Ratio
(SMR) of each partial. This model consists of:

• The difference∆between the level of the masker
and the masking threshold (-10 dB);

• The masking curve towards lower frequencies
(left slope: 27 dB/Bark);

• The masking curve towards higher frequencies
(right slope: -15 dB/Bark).

5.3.2. Building the Mask

We propose in [6] an algorithm to decide whether a
partial is masked or not, while computing the global
mask M incrementally. First, the partials are sorted
by decreasing amplitudes (to be able to decide in-
crementally if the current partial is audible or not).
Then, for each partial p:

• If M( fp)+∆ < V(ap), then p is a masking partial
and M must be updated with its contribution;

• If M( fp) < V(ap) ≤ M( fp) + ∆, then p is neither
masking nor masked;

• If V(ap) ≤M( fp), then p is simply masked.

p4

p3

p2

p1

p5

∆

M

frequency (Bark)

amplitude (dB)

Figure 11. Five partials and the associated mask M
(bold polyline). p1, p2, and p4 are masking partials
and contribute to M. The frequency areas of their
contributions are represented by rectangles. p5 is
neither masking nor masked; p3 is masked (by p2).

We use a list in order to store the contributions of the
masking partials to the global mask M. Since this
list is ordered by increasing frequencies, only the left
and right neighbors are to be considered when insert-
ing the contribution of a new masking partial. The
new partial cannot mask them, since its amplitude
is lower than theirs (remember that the partials have
been previously sorted by decreasing amplitudes),
but it can shorten the frequency area where they con-
tribute to M.

The contributions of the masking partials to the
global mask M are stored in a double-linked list,
sorted by increasing frequencies. In order to decide
if a new partial p is masking, neither masking nor
masked, or simply masked, we need to search the list
for the two contributions surrounding its frequency
fp. If it turns out that p is a masking partial, then
its contribution must be inserted into the list at the
right position – in order to maintain the order of the
list – and the contributions of its neighbors are to be
updated.

As a consequence, we need a data structure or-
dered in frequency, with the notion of left and right
neighbors, and where searching and inserting is as
fast as possible. Thus, we choose a tree-like struc-
ture, the skip list, introduced by Pugh in [24] as an
alternative to balanced trees. Both data structures
show a logarithmic complexity for searching.

6. SPATIALIZATION

Within ReSpect, each sound source has a spatial loca-
tion (in a cartesian space). The listener has a position
too, as well as an orientation (the direction towards
he/she is looking at). Both the listener and the sound
sources can move. Thanks to the spatialization (SPA)
module, ReSpect generates sound signals incorpo-
rating this spatial information.

A sound source radiates spherical acoustic waves,
that propagate to the ears through an energy trans-
mission between air particles of the surrounding en-
vironment. For now, ReSpect considers the sound
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Figure 12. A source S positioned in the horizontal
plane at azimuth θ, propagating acoustic waves to
the head.

sources as punctual and omni-directional.
In a polar coordinate system (see Figure 12), the

source point is localized given its (ρ, θ, φ) coordi-
nates, where ρ is the distance between the source
and the head center (O), θ is the azimuth angle, and
φ the elevation angle.

Currently, ReSpect deals only with sources that
are approximately in the same horizontal plane as
the ears (φ = 0). This is the case in many musical sit-
uations, where both the listener and instrumentalists
are standing on the (same) ground.

Moreover, for now we consider that we are in out-
doors conditions. We consider neither any room nor
any obstacle (free-field case). We consider that acous-
tic waves are propagating in the air, at 20 degrees
Celsius, 101325 Pa (Pascals) – one atmosphere, and
with a relative humidity of 50%.

The listener and the sources can move. However,
their speed is limited to c ≈ 343m/s, “the speed of
sound” (Mach 1). Their acceleration is also limited,
to avoid clicks. These limitations are handled by a
special cinematic module within ReSpect.

6.1. Wave Propagation

6.1.1. Delay

The acoustic waves propagate in the air at a speed
c. As a consequence, covering the distance ρ takes a
time ∆t = ρ/c, and thus this is not the current source
parameters that are heard, but the ones that were
input into ReSpect ∆t seconds before. Thus, the Re-
Spect library manages a buffer of parameters for each
source, to be able to recover the true parameters.

6.1.2. Air Attenuation

For spherical acoustic waves, the amplitude of the
source is divided by 2 (decreases by ≈ −6 dB) when
measured at a distance ρmultiplied by 2.

Moreover, we also consider the frequency-selective
attenuation by the air, which changes the brightness
of the sound, this attenuation being roughly propor-
tional to f 2. Since we consider that ρ is large enough
for the waves to be regarded as planar when reach-
ing the ears, the attenuation factor is given by the ISO
9613-1 norm [25].

6.2. Doppler Effect

If either the source or the listener move, the Doppler
effect may affect the perceived frequencies of the par-
tials. The Doppler factor is thus computed for each
source, and applied (multiplied) to the frequencies
of all of its partials. For a given source, the Doppler
factor is:

Doppler =
c + −→n · −→v O

c + −→n · −→v S
(20)

where−→n is the normalized listener-to-source orienta-
tion vector, −→n =

−→
OS/|OS| (see Figure 12), −→v O and −→v S

are the speed vectors of respectively the listener and
the source, and · denotes the scalar product among
vectors.

6.3. Spatial Cues

Although multi-diffusion with more than 2 loud-
speakers is part of our current research, for now Re-
Spect generates only stereophonic (binaural) signals,
since human beings have only 2 sensors (ears). . .

The source (S) will reach the left (L) and right
(R) ears through different acoustic paths, characteri-
zable with a pair of Head-Related Transfer Functions
(HRTF). A sound source positioned to the left will
reach the left ear sooner than the right one, in the
same manner the left level should be higher due to
head-shadowing. For a given listener, the head, the
torso, and the outer-ear geometry modify the sound
activity content by reflections and shadowing effect.

After Viste [26], we use in [27] a simplified model,
based on the main spatial (acoustic) cues for the
human auditory system localization: the difference
in amplitude or interaural level difference (ILD, ex-
pressed in decibels – dB) and difference in arrival
time or interaural time difference (ITD, expressed in
seconds).

These binaural cues can be related to physical pa-
rameters such as the celerity of sound c and the head
radius r ≈ 7.5 cm. From the analysis of the CIPIC
database [28], Viste [26] derives the following mod-
els for the ILD and the ITD:

ILD(θ, f ) = α( f ) sin(θ) (21)
ITD(θ, f ) = β( f ) r (sin(θ) + θ) /c (22)

where α and β are frequency-dependent scaling fac-
tors that encapsulate the head / ears morphology (see
Figure 13). To be listener-independent, we use the
mean of individual scaling factors over the 45 sub-
jects of the CIPIC database. For each subject, we
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Figure 13. The α (top) and β (bottom) scaling factors.
For example, β takes into account the fact that the
head is not perfectly spherical.

measured the interaural cues from the HRTF and de-
rived the individual scaling factors that best match
the model – in the least-square sense – for all az-
imuths.

In the ReSpect library, each (monophonic) partial
generates a pair of (left and right) signals, the left and
right amplitudes being each modified by minus/plus
the half of the ILD. The ITD is managed in the time
domain. More precisely, the sound samples are writ-
ten in the output buffer at a variable writing position,
depending on the ITD. This imposes the use of a tem-
poral buffer of approximatively 1.6 ms (to cover the
range of all possible ITDs).

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the software archi-
tecture and technical details of the ReSpect library.
This library is free software, under the terms for the
GNU General Public License.

ReSpect encapsulates the research about spectral
sound synthesis done at the SCRIME, including fast
additive synthesis (SYN module), psychoascoustics
(PSY module), and spatialization (SPA module).

ReSpect can be used for teaching purposes, since
its source code is available, and since nearly all mod-

ules can be enabled of disabled, in order to study
their effects on the synthesis speed and quality.

The ReSpect library, in its old version called lib-
SAS, is used for example in the Dolabip project [5],
a multi-field project for developing early-learning
games for electro-acoustic music at school. It is also
used in other computer music software tools of the
SCRIME, more oriented towards composition (e.g.
[29] and [30]).

We plan to release a new version of ReSpect by
then end of 2007, and we hope that it will be use-
ful for many researchers, teachers, and musicians.
And, of course, software developers are welcome to
contribute!
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