
ENP NOTE HEAD DESIGNER

Mika Kuuskankare
Department of Doctoral Studies

in Musical Performance and Research
Sibelius Academy

Finland
mkuuskan@siba.fi

Mikael Laurson
Centre for Music and Technology

Sibelius Academy
Finland

laurson@siba.fi

ABSTRACT
This paper presents a new visual editor called ENP Note
Head Designer (henceforward ND). ND is aimed at as-
sisting both novice and expert users to design custom note
heads in ENP. Both visual and text-based interfaces are
provided. Using the latter approach it is possible to take
advantage of the power of Common Lisp, CLOS, and
OpenGL (the base languages of ENP). The former ap-
proach, in turn, allows to use a set of graphical tools to
define the note heads visual appearance. It is also possible
to mix these approaches. Furthermore, the note heads are
viewed and designed in an actual musical context. These
concepts make the current system unique compared to the
existing approaches.

1. BACKGROUND

ENP Note Head Designer (ND) is part of an increasing
collection of visual tools inside ENP [3]. Currently, these
tools include (1) Color Editor, (2) Expression Designer,
and (3) Note Head Designer. The purpose of these tools
is to provide a visual interface for constructing complex
music notation related CLOS objects and to provide assis-
tance to those users that do not possess the needed pro-
gramming skills to use the strictly text-based approach. It
is important to realize, however, that the visual approach is
not exclusively for the unexperienced users. Some objects
may be realized more easily by using a purely graphical
approach while the others may be more suitable to be de-
fined using a programming language. Thus, a text-based
approach is provided along with the graphical one.

Uniform design principles have been applied to all
aforementioned tools. The tools share same kinds of ed-
itors, components and functionality which makes them
easier to learn. Most editors also contain an interactive
feedback view. This makes it possible to design objects
in their native environment, e.g, the designer sees the note
head as it would appear in the score. Furthermore, vi-
sual synchronized feedback is one of the most important
design concepts behind ENP. Every applicable GUI oper-
ation behaves this way and thus all ENP tools share the
same design principles.

The use of visual editors in our case has several advan-
tages. First, the underlying CLOS syntax can be hidden
to allow the user to concentrate on the task in hand (e.g.,

designing note heads). Second, following the purely text-
based scheme involves routinely repeating several manda-
tory low level program components (i.e., class definitions,
specialized method definitions, etc.). This kind of repet-
itive work load is considerably reduced. Finally, this ap-
proach is also less prone to errors since the syntax and
most of the underlying CLOS code is handled automati-
cally.

Most of the existing commercial notation programs,
such as Finale[1] or Sibelius[8], provide some kind of in-
terface for the user to change the appearance of the note
heads. The most fundamental and the most frequent ap-
proach is that the user can select a note head character and
a font typeface. On the other hand, Finale additionally
provides some graphical tools allowing to define the note
head appearance by drawing arbitrary shapes in a graphics
canvas. However, in this case the note heads are designed
without the presence of any musical context. In Common
Music Notation (CMN, [11]) it is also possible to define
note heads algorithmically by using Common Lisp. Fi-
nally, LilyPond [9] allows to change the note head types
algorithmically, by using Scheme programming language.

ND is a visual tool that allows to design and view user-
definable note heads in ENP. ND provides an approach
that mixes both the power of textual programming and the
use of traditional graphical tools. All the needed program
components and user-interface components (e.g., menus)
are prepared automatically by ND. The note heads are also
viewed and designed in a musical context. Moreover, the
designed note heads are ready to be used in the current
ENP session and can be saved in a file to be loaded either
automatically or by demand.

In the following sections we first describe the note head
scheme used in ENP. Then we present the ND window
and its components. After this we examine in detail the
programming interface. Finally, we give a comprehensive
set of examples prepared with the help of ND. The paper
ends with some concluding remarks.

2. THE ENP NOTE HEAD SCHEME

In this Section we describe the internal representation of
note heads in ENP. We enumerate the different types of
note heads and also give examples of their visual counter-
parts. Internally the note heads can be represented in the



following ways:

(1) Strings or characters. In this case the object is usu-
ally the literal representation of the note head, i.e., the
string or character is drawn as is using the default mu-
sic notation font. The set of standard ENP note heads
are defined in this way. Figure 1 gives a set of some
character-based note heads in ENP.

Figure 1. Character-based note heads in ENP.

(2) Keywords act as symbolic references to specific
CLOS methods that, in turn, draw the note heads ac-
cording to the provided code. This approach is suit-
able for more complex and usually, but not necessar-
ily, static note heads, which cannot usually be rep-
resented with a simple character or string. Figure 2
gives an example of one such note head, denoting a
tambura effect used in guitar music.

Figure 2. A tambura note head.

(3) Objects. When note heads are expressed as objects
every note head can have a different visual appear-
ance and an individual set of data and properties. This
allows, for example, to use different kinds of user ed-
itable shapes as note heads.

The internalbpf note headis an example of this kind
of an object (see Figure 3). In this case the note head
is represented as a break-point function. It can be used
for several different purposes, among others, to de-
fine the visual appearance of the note head itself by
providing the note head shape or allowing the user to
define one, or to contain control information for play-
back (e.g., envelope). The break-point function is also
fully editable through the GUI.

Figure 3. Two bpf note heads. The latter one is in an ed-
itable state with the movable break-points shown as black
rectangles.

The note heads constructed with ND usually belong to
the category (1) or (2). The third option (note head ob-
jects) relies on inheritance and this is not yet supported by
ND.

3. THE ENP NOTE HEAD DESIGNER

There are only a handful of things that need to be de-
fined in order to create a new note head using ND. The
required minimum is: Unique name, which in this case is
a Lisp keyword (e.g., :tambura, :sprechstimme, etc.), and
the note head definition code in Lisp and/or hand drawn
graphics composed out of the provided graphical prim-
itives. All additional code and the UI components, i.e,
classes, methods, and contextual menu entries, are pro-
vided automatically by ND.

3.1. The Components of the Note Head Designer

ND is represented by an ND window, which, in turn, con-
tains several specialized components. As can be observed
in Figure 4, on the top of the window there is a proper-
ties view (1) containing inputs (e.g., note head name and
font). Next there is a code view (2) that can be used to
enter the note head definition in Lisp. At the bottom of
the window there is a graphical tool palette (3), and a pre-
view score/graphics canvas (4). The preview score is fully
editable. Additionally, there are also some push buttons to
deal with the preview score and the note head definition
source code.

The ruler above the staff entitled ’width’ shows the ex-
tent of the note. This can be used as a visual aid when
drawing the note head definition by hand.

Figure 4. The components of the ND window. (1) the
properties view, (2) the code view, (3) the graphical tools,
and (4) the preview score/graphics canvas. The ruler (la-
beled ’width’) showing the extent of the note is displayed
above the staff. Also, (5) shows the stem of the chord the
designed note is associated with.



There are basically two ways to define a note head in
ED. First, by using the text-based or code-based approach
the user can define the the note heads appearance with the
help of the provided set of drawing commands and spe-
cial variables. Second, drawing by hand using a special
graphics canvas and a set of graphical tools.

3.2. Code View

In the code view the user can write standard Lisp code
(see Figure 4). The users can utilize any of the OpenGL
[12] functions provided by LispWorks. Additionally, ENP
provides also a set of graphical primitives, e.g., draw-2D-
arrow, draw-2D-box, draw-2D-bracket, draw-2D-circle,
draw-2D-line, draw-2D-lines, draw-2D-point, draw-2D-
polygon, draw-2D-quads, draw-2D-shape, draw-2D-text,
draw-2D-texture, draw-2D-triangles, etc.

To be able to use these primitives in a meaningful way,
some knowledge about the musical context of the note
head is needed. Access to this information is provided
through some special variables and objects which are enu-
merated in the following list:

(1) x andy . These variables give the corresponding po-
sition of the note head in the horizontal and vertical
axis (see Figure 5).

(2) notehead . A character or string defined by the user.

(3) width . This variable represents the length or extent
of the notehead. As can be seen in Figure 5 this is
mainly determined automatically according to the du-
ration of the associated note. It can also be edited by
the user through the GUI or algorithmically.

(4) height . Some note heads (e.g., bpf note head) pro-
vide information as to their height. For the others this
attribute is set to 1.0. This parameter is usually user-
editable through the GUI.

(5) stem-down-p flag is true if the chord containing
the note has the stem downward.

(6) pitch gives the midi value of the note. It can also
contain a fractional part in case of micro-intervals.

(7) augmentation . Optional augmentation (e.g.
dots). These are calculated automatically by ENP ac-
cording to the duration/rhythm of the note.

(8) self . This variable gives the actual note object.
There are several attributes (in addition to the ones
given above) that can be read directly from it. In most
cases it is not required to access any information in
this way. It is nevertheless provided for advanced ap-
plications.

Figures 6 and 7 illustrate the use of thewidth param-
eter. The two lines of code in the code view both draw a
single line segment. The first line segment is drawn from
{0.0, 0.0} to a fixed end point at{2.0, 2.0}. The end points

Figure 5. The attributes of ENP note heads: (1) x posi-
tion, (2) y position, and the widths of two notes of differ-
ent lengths (3) and (4).

of this line are always drawn relative to the position of the
note head. The second line of code, on the other hand,
draws a line segment from{0.0, 0.0} to a variable end
point at{width, 2.0}. The behavior of these two line seg-
ments can be observed by comparing the preview scores
found in Figures 6 and 7. In the latter score the measure
is considerably wider than in the former one, thus giving
more room to the note. Notice, how the shorter line seg-
ment preserves its length and position but the longer one
adjusts itself according to the new width of the note.

Figure 6. Two line segments drawn in the ND canvas.
Both have one fixed end point at{0.0, 0.0}. The former
one (1) has a fixed end point at{2.0, 2.0} and the latter
one (2) has a variable end point at{width, 2.0}.

Figure 7. The variable end point{width, 2.0} of the
longer line segment dynamically follows the width of the
note head.

3.3. Graphical Tools

In ND there is also a collection of graphical tools that
can be used to compose the visual appearance of the note
heads. The currently available set of tools consist of the
following:

(1) Line segments, line strips, arrows, filled or framed
polygons, and circles. These tools are quite self ex-
planatory. In general they behave as the ones found
in any graphically oriented software. There are, how-
ever, some differences. In case of most of the primi-
tives the user can, for example, add and delete points
(or vertices) to form more or less complex shapes.



(2) Text. This tool allows to add textual information. The
user can select the color, transparency, size, and font
face. The currently available font faces are Times and
Sonata.

(3) Line thickness, and stipple can be set to most ob-
jects. There is a set of predefined stipple patterns and
the user can also enter any arbitrary pattern (a 16-bit
pattern determines which fragments of a line will be
drawn).

(4) Color and transparency. Color and transparency val-
ues can be chosen from a palette of some predefined
colors and levels of transparencies. Additionally, any
color provided by the system color chooser dialog can
be used.

(5) Textures can be applied to polygons. Currently the
texture coordinates automatically map to the vertex
coordinates of the polygon (see [12] for further refer-
ence on texture coordinates).

In the following (see Figures 8 and 9) we give an exam-
ple how the ND graphics canvas behaves. The note head
appearance is always drawn relative to the origo, i.e., the
x/y coordinate of the note head. If the note head of the
chord containing the note head is transposed or otherwise
displaced in the score the graphical objects follow accord-
ingly. This allows to check the behavior of the note head
in several different positions.

Figure 8. The ND graphics canvas shows some graphical
objects with the editable handles shown: (1) polygon, (2)
line strip, (3) circle, (4) text, and (5) filled triangle. The
origo of the drawing canvas is given in (6). All the graph-
ical objects are drawn relative to this point.

4. SOME NOTE HEAD DESIGNER EXAMPLES

In this section we use ND to design several note heads.
We begin by defining a simple character-based note head.
Then we move to more complex cases as we define three
hand drawn note heads. The first two are static ones,

Figure 9. The chord (containing the designed note head)
has been manually displaced both in x and y dimensions
(transposed up and dragged to the right). The graphical
objects adjust their position accordingly.

meaning that they retain their shape regardless of their
musical context. The third one, in turn, is a dynamic one
as it adjusts its visual appearance according to the extent
of the note. As the final example we define an algorithmic
note head that graphically visualizes the production of a
rattling sound.

4.1. A Character-based Note Head

This approach is the most simple one. The user can define
a character found in either Times or Sonata font faces to
be used as the note head. In this example we have selected
a ’ c©’ symbol to create a note head that could potentially
be used, for example, to represent a pitch-wise constrained
note (see [6]). Figure 10 gives the corresponding ND win-
dow. Although the definition of the note head itself seems
trivial there are nevertheless several things that are han-
dled on the behalf the user. Among other things the draw-
ing method is defined along with the needed menu com-
ponents.

Figure 10. A simple character based note head created
with ND.

4.2. A Hand-Drawn Note Head

Using the set of graphical tools described in section 3.3
makes it possible to draw the note head shapes as they



would appear in the score.
As our first hand drawn example we define a simple

note head composed out of some characters and an ar-
row (Figure 11). This particular note head means scraping
along the stings with the fingernail [10]. The arrow indi-
cates the direction. In addition to the actual appearance
of the note head the user needs to define a unique name
(’scrape’).

Figure 11. A note head with a character component and
some simple graphics.

Next we use a filled polygon tool to draw a triangle
shaped note head (Figure 12). The default polygon object
contains four vertices so one vertex is removed simply by
selecting and deleting it. One of the remaining vertices
can now be dragged to form a triangle shape. Our new
note head denotes an inhaling sound as used by, for exam-
ple, Ligeti in ’Aventures’.

Figure 12. A static graphical note head. As the preview
score is fully editable the second note head has been in-
serted in the score by copying.

The latter 1/8 note, in this example, was inserted in the
preview score to illustrate the fact that the note heads are
ready to be used in the current ENP session. They behave
exactly like the built-in ones and can be copied, inserted,
and edited even in the preview score.

The two previous examples have dealt with relatively
static note heads. However, it is sometimes convenient
that the note head scales itself according to the space re-
served for it in the score. In ENP the note heads can be
made to fill the space between two notes or to justify itself

to some proportion of it. The Figure 13 shows an example
of an object of this kind. The note head could be inter-
preted to denote, for example, an evolving cluster (e.g.,à
la Penderecki).

Figure 13. A dynamic graphical note head containing
some proportionally spaced vertices.

This note head is drawn using the filled polygon tool.
The polygons, in turn, are constructed out of a set of ver-
tices. A vertex can have two different modes: a normal
mode and a proportional mode. Vertices that are in a
normal mode have absolute x positions in the coordinate
space, i.e., a vertex placed in{1.0, 1.0} remains in that
position unless moved explicitly by the user. The propor-
tional vertices, however, calculate their x position accord-
ing to the space given to the note (width ). Note, that
the y position of both kinds of vertices is always calcu-
lated relative to the y position (read: pitch) of the note,
as explained above. Figure 14 gives a closer view of this
particular example with the proportional vertices shown.

Figure 14. A note head drawn using a filled polygon
tool. The figure shows also some proportionally spaced
vertices.

4.3. An Code Based Note Head

As our last example we use the code view to define a Lisp-
based note head. We implement a note head for a ’rattling’
effect as described for example in [2]. The code is used to
join a series of B́ezier curves to form a complex, evolving
curve that completely fills the space reserved for the note
head.

Let us examine the source code in more detail (see
code view in Figure 15). First, we define the outer con-
tour of the shape and define a scaling factor for each of



the B́ezier curves (y-shape, y-scaling ). We ba-
sically draw the same curve repeatedly in a loop each
time with a different transformation and scaling values
(see the two OpenGL macroswith-GL-translate
andwith-GL-scale in the bottom of the code view).
Every other curve is also flipped vertically, using a nega-
tive scaling value, to smoothly join the end of each curve
with the beginning of the next one. The whole shape is
scaled inside the extent of the note by dividing the width
of the note by the number of individual curves in the note
head shape (the length of they-shape ).

The preview score in Figure 15 shows the final note
head shape.

Figure 15. A complex note head shape composed out of
several B́ezier curves.

5. CONCLUSIONS

A new visual tool called ENP Note Head Designer was in-
troduced along with several workable examples. The gen-
eral note head scheme of ENP was also covered. The vi-
sual interface described in this paper allows to define note
heads using either a text-based or graphically oriented ap-
proach. This allows users with different backgrounds in
programming to take advantage of this tool. Furthermore,
the uniform representation of note heads in ENP allows
several advantages. First, it is possible to use the new note
heads in the current ENP session without any compiling
or reloading phase. Second, it is also possible to use the
new note heads along with ENP-score-notation, the text
based format of ENP (see [5, 7]). There is no need for
any additional coding; the note heads behave as any of the

build-in ones.
Finally, there are some improvements planned in ND:

(1) Usually the note heads may have slightly different
parameters and offsets depending whether they are
printed stems up or stems down. The ND window
could potentially be organized so that there are two
different detail views (one for up stem and another for
down stem) and one overview which would display
both versions at once. Currently it is not possible to
distinguish between up or down stem variants other
than using the code based approach.

(2) There should also be a possibility to group the note
head entries in the menus, much in the same way as
expressions are currently grouped [4]. This would
make it more convenient to write dedicated libraries
for specialized cases such as modern notation or
shape-notation.

(3) There are still some useful tools missing.
(a) Grouping/Un-grouping. With this tool the
user could group several objects to form a unit that
could then be moved simultaneously. (b) Rotation.
All objects should be allowed to be rotated in a 2D
space either interactively or additionally by providing
a rotation angle.

(4) There should be a collection of more dedicated graph-
ical tools such as triangles, squares, etc. This would
allow more specialized behavior, thus, when zoomed,
a square would retain its shape and so on. Now all the
points forming a polygon can be moved individually.

(5) A grid with snap-to-grid option should probably be
offered. There should be the possibility to choose
individual vertical and horizontal grid spacings (e.g.,
proportions of the width horizontally, and fractions of
the line spacing or staff height vertically).

(6) Finally,there should also be a possibility to save the
current ND session. This would allow to recall a note
head in an editable form and continue to work with it.
Now, only the note head definitions can be saved in a
file.

6. ACKNOWLEDGMENTS

The work of Mikael Laurson has been supported by the
Academy of Finland (SA 105557).

7. REFERENCES

[1] MakeMusic! Inc.Finale User Manual.

[2] Erhard Karkoschka. Das Schriftbild der Neuen
Musik. Hermann Moeck Verlag, Celle, 1966.



[3] Mika Kuuskankare and Mikael Laurson. ENP2.0
A Music Notation Program Implemented in Com-
mon Lisp and OpenGL. InProceedings of Interna-
tional Computer Music Conference, pages 463–466,
Gothenburg, Sweden, September 2002.

[4] Mika Kuuskankare and Mikael Laurson. ENP-
Expressions, Score-BPF as a Case Study. InPro-
ceedings of International Computer Music Confer-
ence, pages 103–106, Singapore, 2003.

[5] Mika Kuuskankare and Mikael Laurson. Recent De-
velopments in ENP-score-notation. InSound and
Music Computing ’04, October 2004.

[6] Mikael Laurson. Recent Developments in Patch-
Work: PWConstraints - a Rule Based Approach to
Complex Musical Problems. InSymposium on Sys-
tems Research in the Arts, Baden-Baden, 1999.

[7] Mikael Laurson and Mika Kuuskankare. From
RTM-notation to ENP-score-notation. InJourńees
d’Informatique Musicale, Montb́eliard, France,
2003.

[8] Sibelius Software Ltd.Sibelius3 User Guide.

[9] Han-Wen Nienhuys and Jan Nieuwenhuizen. Lily-
Pond, a system for automated music engraving. In
XIV Colloquium on Musical Informatics (XIV CIM
2003), Firenze, Italy, May 2003.

[10] Howard A. Risatti.New Music Vocabulary. A Guide
to Notational Signs for Contemporary Music. Univ.
of Illinois Press, Urbana, 1973.

[11] Bill Schottstaedt. Common Music Notation. InBe-
yond MIDI, The Handbook of Musical Codes. MIT
Press, Cambridge, Massachusetts, 1997.

[12] Mason Woo, Jackie Neider, Tom Davis, and Dave
Shreiner. OpenGL Programming Guide. Addison
Wesley, Massachusetts, USA, 3rd edition, 1999.


