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Abstract

A canon is a polyphonic piece whose voices lead the
same melody with different delays. A rhythmic canon
is the one whose tone onsets result in a regular pulse
train with no simultaneous tone onsets at a time.

Tiling in mathematics is covering an area (e.g., a
square) by disjoint equal £gures. In that sense, a rhyth-
mic canon tiles the time, providing a covering of a reg-
ular pulse train by disjoint equal rhythmic patterns.

We consider the general case of tiling the time by
rhythmic patterns of a few shapes. In particular, we
construct a rhythmic canon from a theme, its augmen-
tation (the theme with all durations doubled) and its
double augmentation. For this purpose we develop a
tiling algorithm which resembles the sieve of Eratos-
thene (284–192 BC) for £nding prime numbers. Be-
sides, we approach to an analytical solution by refor-
mulating the problem in terms of polynomials and re-
ducing it to Diophantine equations (supposedly 325–
409). Finally, we describe the application of the meth-
ods developed to making a composition “Eine kleine
Mathmusik”.

1 Introduction

Recently a number of advanced mathematical mod-
els for music analysis and composition have appeared
(e.g., Mazzola 1990). One of such models is due to
Vuza (1991–93, 1995) who has developed a model for
£nding some particular rhythms. The problem formu-
lation has been in¤uenced by Vieru (1993).

The Vieru’s and Vuza’s goal was to generalize Mes-
sian’s (1944) ideas backing his modes of limited trans-
position. Recall that Messian considered disjoint pitch
classes with the same interval relations (= transposi-
tions of one pitch class) which cover the 12-tone tem-
pered scale. For instance, pitch class {c, e[, f], a} and
its two transpositions, by one and by two semitones,
meet this requirement. This is similar to what is called
in mathematics tiling, that is, covering an area (e.g., a
square) by disjoint equal £gures.

Instead of the tempered scale, Vieru und Vuza have
considered a regular pulse train. By analogy with cov-
ering the scale by a pitch class and its transpositions,
the pulse train had to be covered by a certain rhyth-
mic pattern with different delays. The disjointedness

of pitch classes implied no common beats in different
instances of the rhythmic pattern. The circularity of
pitch (= octave periodicity) corresponded to the circu-
lar time (= periodicity of rhythms).

Such ‘rhythms of limited transposition’ were in-
tended for constructing unending (= in£nite, periodic)
canons. Recall that a canon is a polyphonic piece
whose voices lead the same melody with different de-
lays. A rhythmic canon is the one whose tone onsets
result in a regular pulse train with no simultaneous tone
onsets at a time. In that sense, a rhythmic canon tiles
the time, covering a regular pulse train by disjoint equal
rhythms from different voices.

From the musical standpoint, the time-tiling ap-
proach supports building polyphonic pieces from a sin-
gle rhythmic pattern. It meets the principle of economy
in both classical and contemporary music (long phrases
built from the opening four-note motive in Beethoven’s
Fifth Symphony, 12-tone composition, etc.). On the
other hand, in rhythmic canons the independence of
voices is maximal, since no two tones occur simultane-
ously. Finally, rhythmic canons are harmonically un-
stable due to asynchronous anticipations, suspensions,
and resolutions in different voices, which is much ap-
preciated in polyphony, where cadences are usually
avoided.

Therefore, it is not surprising that the time-tiling
approach has attracted attention of music theorists
(Andreatta et al. 2001, Fripertinger 2002). However
it turned out that solutions to the time-tiling prob-
lem are mainly trivial and musically not interesting.
A typical solution is a metronome rhythm entering
with equal delays, e.g., a sequence of every fourth
beat, entering at the £rst, at the second, and at the
third beat (a rhythm analogy of the transpositions of
pitch class {c, e[, f], a}). Non-trivial solutions have
been found by Vuza for a circular time with periods
72, 108, 120, . . . , meeting some factorization require-
ments.

As one can imagine, these solutions are rather com-
plex to make perceptible musical structures, so that the
effect is as described by Xenakis (1971, p.8): “Lin-
ear polyphony destroys itself by its very complexity;
what one hears is in reality nothing but a mass of notes
in various registers . . . There is consequently a contra-
diction between the polyphonic linear system and the
heard result, which is surface or mass.”

Under some more freedom in selecting tiling ele-



ments, Johnson (2001) has heuristically constructed a
simple £nite canon (as opposed to unending canon) and
asked for the existence of other solutions. In addition
to the basic rhythmic pattern he has used its augmen-
tation (with double durations) like in Bach’s The Art
of the Fugue. However, the available methods were
adaptable neither to such a general case, nor to the lin-
ear time (as opposed to the circular time).

The given article provides a numerical solution to
the general problem. We developed an algorithm for
constructing simple canons from several rhythmic pat-
terns, in particular, from successive augmentations of
the theme. As for an analytical solution, it was shown
that the problem is equivalent to solving Diophantine
equations (supposedly 325–409) in special polynomi-
als. For this purpose an isomorphism between rhyth-
mic canons and these polynomials was established. Fi-
nally, we describe an application of the method de-
scribed to algorithmic composition.

In Section 2, “Problem formulation”, we introduce
basic assumptions and illustrate them with an example.

In Section 3, “Polynomial representation”, we in-
troduce an isomorphism between rhythms and 0–1
polynomials, that is, whose coef£cients are 0s and 1s,
the same as for representing the structure of sound
spectra (Tangian 1993, 1995, 2001). Then the prob-
lem of constructing rhythmic canons is reformulated as
£nding sums of products of 0–1 polynomials, which is
analogous to Diophantine equations in 0–1 polynomi-
als. Since no general solution is known for Diophan-
tine equations already in integers, there is little hope
to solve them in polynomials (polynomials generalize
integers, containing them as polynomials of degree 0).
Respectively, the question of analytically constructing
rhythmic canons remains open.

In Section 4, “Algorithm”, we introduce a coding
convention for rhythmic canons with no redundancy
and propose an enumeration algorithm. Its idea is sim-
ilar to that of the sieve of Eratosthene (284–192 BC)
for £nding prime numbers.

We provide some details on the processing. A sam-
ple output of the program is given in Section 8.

In Section 5, “Musical application”, we describe
the use of the computer output for making a musical
piece. Its score is given in Section 9.

In Section 6, “Conclusion” we recapitulate the
main results of the paper.

2 Problem formulation

To be speci£c, consider Johnson’s (2001) rhythm
and its coding by 0s and 1s with respect to a pulse train
of sixteenths:

1 1 10 0

s s s.

We are going to build rhythmic canons from this pat-
tern and its augmentations shown in Table 1.

Table 1: Three rhythmic patterns coded by 1s and 0s

Patt. Musical meaning Progression of tone
No. onsets and empty beats
1 Theme 11001
2 Augmentation 101000001
3 Double augmentation10001000000000001

To provide a homogeneous pulse train required in
rhythmic canons, assume the following:

Assumption 1 (No gap) Tone onsets result in a regu-
lar pulse (= no simultaneous 0s in all the voices).

Assumption 2 (No double beat) No tone onset oc-
curs simultaneously in any of two voices (= no simul-
taneous 1s in any of two voices).

Table 2 depicts the score of a rhythmic canon which
satis£es both assumptions.

Table 2: A score of rhythmic canon 11211 with no gaps
and no double-beats

Voice Pattern Beat number
number number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 0 0 1 . . . . . . . . . .
2 1 . . 1 1 0 0 1 . . . . . . . .
3 2 . . . . . 1 0 1 0 0 0 0 0 1 .
4 1 . . . . . . . . 1 1 0 0 1 . .
5 1 . . . . . . . . . . 1 1 0 0 1

Simultaneous onsets 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The canon code ‘11211’ is the succession of pat-
terns as they enter in the canon given in the second col-
umn of Table 2. In the score, 1s are tone onsets, zeros
denote sustained tones (tied notes), and points denote
sixteenth rests.

Coding a rhythm by a sequence of 0s and 1s is fea-
sible for all notationable rhythms, provided that the ref-
erence pulse train is suf£ciently dense, being a com-
mon divisor of the durations considered. For instance,
a quarter note, two eights, and three eight triplets can
be coded as follows

1 1 1

s s s

00000 001

s

00 0 0 01 1

s s

3

3 Polynomial representation

De£ne an isomorphism between rhythms and poly-
nomials with coef£cients 0 or 1 as follows. To be spe-
ci£c, represent the £rst pattern in Table 1 as follows:

P = 11001←→ p(x) = 1 + 1x+ 0x2 + 0x3 + 1x4 .



If pattern P delays by 2 beats as in the second voice in
Table 2, multiply p(x) by x2:

P2 = 0011001 ←→ p(x)x2 .

No shift corresponds to the multiplication of p(x) by
the polynomial unit 1 .

A superposition of rhythmic patterns corresponds
to the sum of the associated polynomials. For instance,
the superposition of P and P2 :

P+P2 = 1111101↔ p(x)+p(x)x2 = p(x)(1+x2) .

A double beat results in a coef£cient 2 instead of 1 for
a single beat:

P+P3 = 11012001↔ p(x)+p(x)x3 = p(x)(1+x3).

Multiple superpositions of P ↔ p(x) with delays
correspond to polynomial products p(x)q(x) with q(x)
representing multiple time delays. For instance, the su-
perposition of P with delays by 2, 8, and 10 beats (sum
of voices 1, 2, 4, and 5 in Table 2) corresponds to

p(x)q(x), where q(x) = 1 + x2 + x8 + x10 .

Let voice delays in a rhythmic canon generated by
pattern P ↔ p(x) be represented by polynomial q(x).
Assumptions 1–2 mean that

p(x)q(x) = In(x) =
n∑

i=0

xn , (1)

where n is the sum of degrees of p(x) and q(x). In this
case, the length of the canon is n+ 1 beats.

Proposition 1 (Uniqueness of a rhythmic canon)
A rhythmic canon generated by pattern P ↔ p(x)
can be n + 1 beats long if and only if there exists a
polynomial q(x) with coef£cients 0 or 1, satisfying
condition (1). If such a canon exists, it is unique to
within permutation and union of voices.

The reservation “unique to within permutation and
union of voices” in Proposition 1 means that no new
canon emerges if we (a) renumber the voices, or (b) re-
duce the number of voices by putting disjoint rhythmic
patterns into the same voice. For instance, £ve voices
in Table 2 can be reduced to three voices by uniting the
voices 1–3 and 2–5.

Now note that the jth augmentation Pj of pattern
P corresponds to the polynomial

Pj ←→ pj(x) = p(x2
j

) .

For instance the augmentations from Table 1 corre-
spond to the polynomials

1st augmentation ←→ p(x2) = 1 + x2 + x8

2nd augmentation ←→ p(x4) = 1 + x4 + x16 .

Consequently, a rhythmic canon built from the
rhythmical ‘theme’ P and its two successive augmen-
tations must satisfy the polynomial equation

p(x)q(x) + p(x2)q1(x) + p(x4)q2(x) = In(x) , (2)

where polynomial qj(x) is associated with entry de-
lays of the jth augmentation. For example, the canon
in Table 2 satis£es the equation (2) for the following
polynomials:

q(x) = 1 + x2 + x8 + x10

q1(x) = x5

q2(x) = 0

In(x) = 1 + x+ · · ·+ x14 .

The isomorphism between rhythms and 0–1 poly-
nomials is useful in analyzing properties of rhythmic
canons. In particular, it enables to estimate the dif£-
culties in £nding a general analytical solution of the
problem considered.

Note that polynomials are ‘generalized numbers’:

• They include numbers as polynomials of degree
0.

• Addition, subtraction, multiplication, and division
are de£ned for polynomials similarly to that for
numbers.

• The division properties of polynomials are simi-
lar due to the unique factorization into irreducible
polynomials, which are polynomial analogue of
prime numbers.

• The polynomial classes inherit some properties of
numbers which are used for their coef£cients: one
can consider integer coef£cients, or rational coef-
£cients, or real coef£cients, etc.

From this standpoint, the equation (2) is a polyno-
mial version of Diophantine equation

pq + p1q1 + p2q2 = I

with positive integer coef£cients p, p1, p2, I and to be
solved in positive integers q, q1, q2. For instance, the
Diophantine equation

5q + 7q1 = 100 (3)

has two solutions, (6, 10) and (13, 5).
The existence of a general analytical solution (with

a formula) to (2) would mean the existence of an an-
alytical solution to much more simple Diophantine
equations in integers. Since no solution to Diophantine
equations is known, there is little hope to solve more
general Diophantine equations for polynomials.

By the way recall that Fermat (1601–1665) has for-
mulated his Great Theorem as a margin note in Dio-
phante’s Arithmetic as a step towards the unsolvable
general case.



4 Algorithm

An appropriate coding convention is often a ladder
to success in combinatorics. An enumeration algorithm
must operate on as few parameters as possible.

Proposition 2 (Coding) Under Assumptions 1 and 2,
a rhythmic canon coded by a succession of entering
rhythmic patterns is unique to within permutation and
union of voices.

Under our coding convention, a canon C is deter-
mined by a ternary number

C = {π1π2 . . . πi}, where πi = 1, 2, 3 ,

which, being represented by rhythmic patterns or poly-
nomials, satis£es Assumptions 1 and 2 (= equation
(2)).

For sorting out inappropriate ternary numbers we
use a kind of sieve of Eratosthene. The analogy is two-
fold:

• If we consider an element (canon) then we delete
the branch with its successors, which stems from
this element.

• We always start with the £rst remaining element.

The Candidates for canon are to be collected in list
C of candidates. The kth candidate is a ternary number
C[k], e.g. C[k] = {112}.

The Selected canons, satisfying Assumptions 1–2,
are collected in the list of ternary numbers S. For in-
stance, the £rst selected canon is S[1] = {11211}.

Creating a new element of list C is appending ei-
ther 1, 2, or 3 to the currently considered ternary num-
ber C[k]. The new element can be either rejected, or
selected into list S, or farther retained in C as a candi-
date. In the latter case the new ternary number is ap-
pended to the end of list C. Since the ternary number
currently processed is no longer needed, it is deleted.
Therefore, the element currently processed is always
the £rst in list C. Thus C is destroyed from the top, ap-
pended from the bottom, and some elements of C are
moved to S.

More speci£cally, do the following

0. Initialize list C of candidates with the £rst rhyth-
mic pattern (which must have a gap somewhere),
e.g., C[1] = {1}. Initialize list S of selected
canons to be the empty list.

1. Represent the pulse train of the £rst candidate for
canon C[1] (as a resulting sequence of 0s and 1s)
and £nd the £rst gap (0).

(a) Append 1, 2, or 3 to C[1]. It means that the
pattern’s Pj £rst beat is put at the £rst 0 of
pulse train of C[1].

(b) If the new canon {C[1], πj} has no gaps
and no double beats (= has only 1s in the
beat representation) then append {C[k], πj}
to list S.

(c) If some new canon {C[1], πj} has no double
beats but has gaps (= has no elements greater
than 1 and at least one 0 in the beat represen-
tation) then append {C[1], πj} to list C.

(d) Delete the currently considered (£rst) candi-
date C[1] from list C as unnecessary. Return
to the beginning of Item 1.

The list of selected canons has no repeats in the
sense that no smaller canon is a part of a larger canon.
Indeed, if a canon is accomplished then it is moved
from the list of candidates to the selected list, leaving
no descendants in list C. In other words, each selected
canon is continuous, with the end of a rhythmic pat-
tern in one voice occurring in the middle of a rhythmic
pattern of some other voice.

The algorithm cannot miss any of canons, because
it is based on generating ternary numbers with all
branches. Due to restrictions imposed by Assumptions
1–2 the number of branches retained remains within
operational limits, enabling us to perform computa-
tions in reasonable time.

The implementation of the algorithm includes sev-
eral technicalities. For instance, the list C of candi-
dates for canon should be stored and processed by por-
tions, otherwise it may become too long causing runs
out of memory or very long disk exchanges. The list C
is stored in a series of temporary £les with keeping in
memory only the £rst £le (to be destroyed from the top)
and the last £le (to be appended from the bottom up to
a certain size, after that a new £le should be opened).

The second important point is that for each candi-
date for canon, its pulse train after the £rst gap should
be saved. It prevents from remaking the pulse train
while appending a rhythmic pattern to the current can-
didate for canon.

The program has been written in the MATLAB (=
MATrix LABoratory) C++-based computer program-
ming environment for matrix and vector operations.
Besides £nding canons the program also selects canons
according to several practical criteria, as the number of
simultaneous voices, average pattern density, and re-
peats in the canon structure.

The program output is a LATEX text £le. A typical
processing summary for a program running a PC with
a Pentium 300MHz-processor (note that MATLAB is
not a compiler but an interpreter) is given in Table 3.

5 Musical application

Section 9 contains the score of Eine kleine Math-
music. It is a G major piece for a woodwind sextet
based on a number of rhythmic canons computed. All



Table 3: Processing summary for computing rhythmic canons

Totally tested combinations (candidates for canon) 1260234
Maximal number of voices in preselection/selection 6 6
Maximal mean pattern number in preselection/selection 1.8 1.7
Periodicity in the preselection/selection No Yes
Found/preselected/selected canons of length 5 1 1 0
Found/preselected/selected canons of length 10 6 3 0
Found/preselected/selected canons of length 15 20 0 0
Found/preselected/selected canons of length 20 93 21 1
Found/preselected/selected canons of length 25 348 0 0
Found/preselected/selected canons of length 30 1460 0 0
Found/preselected/selected canons of length 35 5759 0 0
Found/preselected/selected canons of length 40 23502 961 15
Totally found/preselected/selected canons 31189 986 16
Maximal number of £les on disk 120
Maximum/average number of candidates for canon in memory 1000 296
Time for computing/selection/making LATEX £le, in seconds 1856 10 7

the canons are built from the basic rhythmic pattern

11001 = s s s. , its augmentation, and its dou-
ble augmentation. With regard to the length of the basic
pattern, the time of the piece is 5/16.

The reverse of the basic code 11001, that is, 10011
determines basic melodic intervals which are third and
second. Since the piece is assumed tonal, thirds and
seconds are not restricted to be minor or major, respec-
tively small or large. In particular, the theme motive is
g1, b1, c2.

In order to reduce the number of performers, non-
overlapping canon voices (= entering patterns) are
grouped into fewer physical voices which are per-
formed by the same instrument. For instance, the canon
11211 shown in Table 2 has £ve canon voices which
can be reduced to three physical voices. This is done
heuristically with an intention to construct more devel-
oped melodies from successive basic motives.

Since the piece consists of a series of canons, they
are separated by additional 1/16–3/16 rests which are
rhythmically perceived as stops and harmonically em-
phasized as cadences at the ends of every canon.

The style of the piece is neo-baroque with major-
minor harmonies, rules of polyphony, and usual tonal
development within a piece. It has a sonata form with
two themes.

To speak on development, a variation convention is
accepted. A canon is assumed to be a variation of some
other canon if it has the same beginning but a new end,
e.g.

1121 1 → 1121 331121

Due to particularities of the algorithm, the list of
canons selected is ordered with respect to their size,
from shorter to longer, and within every size canons are
ordered lexicographically, e.g., canons 112 . . . stand

before 113 . . .. That means that closest variations of
a given canon succeed it in the list.

The musical form of the piece is displayed in Table
4. As one can see, the harmonic plan of the piece fol-
lows classical standards. The £rst entry of the second
theme is in the tonality of dominant, the development
begins with the £rst theme in the dominant tonality, and
the return to the main tonality is performed through the
tonality of subdominant. The selection of a particular
canon for a particular purpose is motivated by several
reasons:

1. For Theme 1, the shortest available canon (No. 1)
is selected and used twice with harmonic modi£-
cation, so that the rhythmic structure of Theme 1
is 1 + 1.

2. The closest variations of Theme 1, Canons No. 2–
4 (the latter taken twice), are used to build a transi-
tion to Theme 2. The resulting rhythmic structure
of the transition is 2 + 2 + 2 + 2.

3. Theme 2 (Canon No. 29, the £rst of relative length
4 with fewer than 6 physical voices) is ‘slower’
due to prevailing patterns of augmentation and
second augmentation.

4. Variation of Theme 2 is quite distant (Canon No.
55), but it is the only canon of the same length as
Canon No. 29 with only four physical voices. The
fewness of physical voices is quite important to
preserve harmonic transparency.

5. Development contains the longest canon through-
out the piece, with 40 entries of the theme. It has
been selected due to its periodicity (which enables
to make harmonic sequences usual in classical de-
velopment) and fewness of physical voices which
are 6.



Table 4: The form of Eine kleine Mathmusik
Section Material Bars Description
Exposition Theme 1 1–6 Canon No. 1, twice

11211
︸ ︷︷ ︸

G→D

+11211
︸ ︷︷ ︸

C→G

Transition 1 7–18 Canons No. 2 and 3
1121 331121
︸ ︷︷ ︸

C→C7

+1121 332222
︸ ︷︷ ︸

F→F6/9

Transition 2 19–30 Canon No. 4, twice
11 31211211
︸ ︷︷ ︸

dm→A7

+11 31211211
︸ ︷︷ ︸

dm→F6

Theme 2 31–42 Canon No. 29
112 22233211131211211
︸ ︷︷ ︸

D→F]7

Var. Theme 2 43–54 Canon No. 55
11 312133112332111211
︸ ︷︷ ︸

E→A+

Development Theme 1 55–60 Canon No. 1, twice, D → A, G→ D
Var. Trans. 1 61–84 Canon No. 8005 with 3 periods

1
︸︷︷︸

G

1222233211
︸ ︷︷ ︸

D,B7,am6,E7

1222233211
︸ ︷︷ ︸

G,E7,dm6,A7

1222233211
︸ ︷︷ ︸

C,A7,gm6,D7

121332222
︸ ︷︷ ︸

F→G7

Var. Trans. 2 85–96 Canon No. 49
1131211 3121131211211
︸ ︷︷ ︸

cm→A[

Theme 2 97–108 Canon No. 29, C → E7

Var. Theme 2 109–120 Canon No. 55, D → G+

Recapitulation Theme 1 121–126 Canon No. 1, twice, G→ D C → G
Trans. 2 127–138 Canon No. 4, twice, gm → D7, gm → E[

Coda Theme 1 151–162 Canon No. 1, four times
gm → D, B[→ F, fm → cm, D−9 → G

Another selection criterion is the pattern density,
that is, the mean value of the patterns used in the
canon. For instance canon 11211 has the den-
sity 6/5, indicating that the basic rhythmic pattern
prevails over the augmentations. It implies a bet-
ter recognizability of the theme and more vivid
melodic development. Conversely, for ‘slow’ sec-
tions a high density may be desired. In our piece
a low density is always preferred.

6 Conclusion

The paper suggests an algorithmic solution to the
problem of £nding rhythmic canons with augmenta-
tions.

Instead of augmentations of the theme, the model
can operate with some other arbitrary rhythmic pat-
terns. Thus besides rhythmic canons restricted to a sin-
gle theme, one can construct ‘rhythmic fugues’ with
several themes and counter-subjects.
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Birkhäuser.

MESSIAEN, O. (1944): Technique de mon langage
musical, Vol. 1. Paris, Leduc.

TANGUIANE, A.S. (1993): Arti£cial Perception and
Music Recognition, Berlin, Springer.

TANGUIANE, A.S. (1995): “Towards axiomatiza-
tion of music perception,” Journal of New Music
Research, 24 (3), 247–281.

TANGIAN, A.S. (2001): “How do we think: Model-
ing interactions of memory and thinking,” Cogni-
tive Processing, 2, 117–151.

VIERU, A. (1993): The Book of Modes, Bucarest,
Editura Mizicala.

VUZA, D.T. (1991–93): “Supplemantary sets and
regular complementary uneding canons”, Per-
spectives of New Music, Part 1: 29 (2), 22–49,
Part 2: 30 (1), 184–207, Part 3: 30 (2), 102–125,
Part 4: 31 (1), 270–305.

VUZA, D.T. (1995): “Supplemantary sets — theory
and algorithms”, Muzica, (Bucarest) Nr. 1, 75–99.

XENAKIS, I. (1963): Musiques Formelles. Paris:
Edition Richard-Masse. Engl. translation: For-
malized Music. Bloomington: Indiana University
Press, 1971.

8 Appendix 1: Sample output

Canon No. 1 of length 15 beats with 3 simultaneous
voices and pattern density 1.2

V-cePatt. Score
1 1 11001 . . . . . . . . . .
2 1 . . 11001 . . . . . . . .
3 2 . . . . . 101000001 .
4 1 . . . . . . . . 11001 . .
5 1 . . . . . . . . . . 11001

Canon No. 2 of length 30 beats with 4 simultaneous
voices and pattern density 1.6

V-cePatt. Score
1 1 11001 . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 . . 11001 . . . . . . . . . . . . . . . . . . . . . . .
3 2 . . . . . 101000001 . . . . . . . . . . . . . . . .
4 1 . . . . . . . . 11001 . . . . . . . . . . . . . . . . .
5 3 . . . . . . . . . . 10001000000000001 . . .
6 3 . . . . . . . . . . . 10001000000000001 . .
7 1 . . . . . . . . . . . . . . . . 11001 . . . . . . . . .
8 1 . . . . . . . . . . . . . . . . . . 11001 . . . . . . .
9 2 . . . . . . . . . . . . . . . . . . . . . 101000001

10 1 . . . . . . . . . . . . . . . . . . . . . . . . 11001 .

Canon No. 3 of length 30 beats with 6 simultaneous
voices and pattern density 1.9

V-cePatt. Score
1 1 11001 . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 . . 11001 . . . . . . . . . . . . . . . . . . . . . . .
3 2 . . . . . 101000001 . . . . . . . . . . . . . . . .
4 1 . . . . . . . . 11001 . . . . . . . . . . . . . . . . .
5 3 . . . . . . . . . . 10001000000000001 . . .
6 3 . . . . . . . . . . . 10001000000000001 . .
7 2 . . . . . . . . . . . . . . . . 101000001 . . . . .
8 2 . . . . . . . . . . . . . . . . . 101000001 . . . .
9 2 . . . . . . . . . . . . . . . . . . . . 101000001 .

10 2 . . . . . . . . . . . . . . . . . . . . . 101000001

Canon No. 4 of length 30 beats with 4 simultaneous
voices and pattern density 1.4

V-cePatt. Score
1 1 11001 . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 . . 11001 . . . . . . . . . . . . . . . . . . . . . . .
3 3 . . . . . 10001000000000001 . . . . . . . .
4 1 . . . . . . . 11001 . . . . . . . . . . . . . . . . . .
5 2 . . . . . . . . . . 101000001 . . . . . . . . . . .
6 1 . . . . . . . . . . . . . 11001 . . . . . . . . . . . .
7 1 . . . . . . . . . . . . . . . 11001 . . . . . . . . . .
8 2 . . . . . . . . . . . . . . . . . . . . 101000001 .
9 1 . . . . . . . . . . . . . . . . . . . . . . . 11001 . .

10 1 . . . . . . . . . . . . . . . . . . . . . . . . . 11001
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