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Abstract:

We present a new system for music composition using structured sequences. FrameWorks has
been developed on the basis of Task Analysis research studying composition processes and
other user-centred design techniques. While the program only uses MIDI information, it can
be seen as a ‘proof of concept’ for ideas generally applicable to the specification and manipu-
lation of other music control data, be it raw audio, music notation or synthesis parameters.
While this first implementation illustrates the basic premise, it already provides composers
with an interesting and simple to use environment for exploring and testing musical ideas. Fu-
ture research will develop the concept, in particular to enhance the scalability of the system.
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1 Introduction

FrameWorks has been developed as a part of on-going research at the University of Hertford-
shire aimed at providing composers with innovative music composition tools that do not re-
quire them to become experts in signal processing and/or computer programming (Polfreman
and Sapsford, 1995). A major part of this research involved Task Analysis (TA) studies and
the development of a Generic Task Model (Johnson, 1992) describing the music composition
process. The GTM has been described elsewhere (Polfreman, 1997) and it has been used in
the development of Modalys-ER (Polfreman, 1999) as well as FrameWorks (Polfreman,
2001). While Modalys-ER focused on approaches to sound synthesis using physical models,
FrameWorks concentrates on ideas of musical structure and reducing viscosity and premature
commitment (Green, 1989) in the system, while doing this in a way that is both simple to use
and does not require a mathematical or programming approach. Viscosity refers to the resis-
tance to change of an artefact; in particular whether local changes require many other changes
to be made manually elsewhere. Premature commitment refers to the case where key decisions
have to be made too early in the process, rather than left to a point where the composer is
ready to make them. A bizarre example would be a system that required the composer to
specify at the outset exactly the number of notes that a piece was going to contain. While ex-
isting systems may be scen as having low viscosity and little premature commitment (Black-
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well, Green and Nunn, 2000), we argue that such analysis fails to take into account the com-
plex internal relationships often present in musical work. These relationships, for example, can
require many changes to be made throughout a piece in response to a small local change, in or-
der to preserve the integrity of the composition. In most software packages (i.e. not algo-
rithmic composition systems) such changes are not propagated automatically by the system
and so a high viscosity can be present. Typically composers are also committed to developing
material into a musical structure or form rather than being allowed to start from higher level
concerns and then input material.

FrameWorks itself is an early implementation of the ideas emerging from the TA work and it
is planned to extend the system in various ways in future work. In its current state it does al-
low composers to do much that is difficult to achieve with typical software sequencers and
encourages composers to experiment with different musical ideas. That said, significant exten-
sions to the current software are needed to produce a truly effective implementation of the
concept. FrameWorks is a Java application (1.1.5 or later + Swing/JFC) which uses Grame’s
free MidiShare system. A free preview release that runs on Windows and Mac OS is available
from the University of Hertfordshire from April 2001. A Linux version should be available in
the near future.

2 GTM Involvement
The GTM identified three main (interrelated) areas of task performance:

e Design framework which involves the setting out of what can be seen as a set of (musical
and practical) constraints within which the piece will be composed. This involves defining
instrumentation, selecting tools, developing structural ideas and devising systems for cre-
ating musical material.

e Research which may be necessary before a work can be completed, including many differ-
ent topics that may be of interest to composers.

e Produce music which involves creating the music itself and setting it down in an external
form so that it can be performed or tested. This involves the creation of the final deliver-
able product of the composition process. This can be seen as the application of ideas de-
veloped in the first two areas.

In many systems this last task has usually been over-emphasised in typical sequencing tools
at the cost of research and design framework areas. In other cases, in order to achieve more
sophisticated musical structures and generation of material, the systems generally require a
programming approach to composition, rather than a more intuitive musical one. The GTM
analyses these areas further and the structure of FrameWorks reflects at least some of these
GTM components. In particular, FrameWorks allows the composer to experiment with some
structural aspects of musical composition without using computer programming languages or
mathematical constructs. In future development, further parts of the GTM will be imple-
mented in the system in order to support these areas more fully and effectively.
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3 FrameWorks
3.1 Overview

FrameWorks is based on a three level structure: workbench, framework and sequence. The
workbench is a general area for placing information items relating to a particular composition.
This includes both musical and non-musical objects. It is seen as a research supporting area, as
the products of research that a composer has undertaken may be used here. The framework is
where a musical work is actually put together. A composition is defined in terms of compo-
nents and relations. Components are simply containers for musical material. These are placed
on tracks (where tracks have a similar role as in typical MIDI sequencers) and can be inter-
connected via relations. These dynamically maintain relationships between the material in
source components and transformed copies of that material in destination components. The
sequence level displays the composition without any structural information on a track-based
display similar to a traditional software sequencer. This is not for editing but merely to give
the composer a flattened view of the completed musical content.

3.2 Workbench

In the current implementation there are five types of element that can be placed on the work-
bench. These are: texts, pictures, diagrams, components and relations:

o Text: These are sections of (currently plain) text. These might be notes taken by the com-
poser relating to musical ideas, inspirational material (e.g. quotes from poetry/prose), texts
to be set to music, reminders, etc. These can be created and edited in Frame Works.

o Pictures: These are picture files (currently .gif) that can be imported into FrameWorks,
which then saves its own copy. Again these could be inspirational images, or perhaps pic-
tures of scores or graphics to be used in order to guide some musical aspect of the work.

* Diagrams: These are diagrams of a form similar to those that can be made using packages
such as AppleWorks® or Adobe Illustrator®, but less sophisticated. A simple editor is
contained within FrameWorks for creating and manipulating diagrams. These might be
sketches of the overall shape of a piece or a planned timeline, for example.

» Components: These are sections of musical material (currently just MIDI note events),
having a duration, start point and MIDI channel, and are created and edited using a simple
piano roll style notation.

* Relations: These express musical relationships between components and invoke transfor-
mations such as transposition, inversion, time manipulations and filtering.

Each element on the workbench has a drop down preview of its contents and can be opened
(via double-click) to display its contents fully in a new window where the contents can be ed-
ited (apart from picture elements). Figure 1 shows an example workbench.
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Figure 1: A workbench.
3.3 Framework

In the framework, components are placed on tracks and can be interconnected via relations.
There are several types of relation currently used in FrameWorks and we aim to extend this
range in future development. At the moment there are four main types:

e Time Relations: These represent a set of time based transformations utilising an arbitrary
number of time maps. Each map delineates a segment of the source component (with start
and end points expressed as percentages of the source duration) which can be played for-
wards or backwards with a user specifiable speed factor (1.0 = original speed, 0.5 = half
speed, 2.0 = twice speed, etc). A time relation comprises a series of time maps applied
successively to the source material. These relations can be used simply for time stretch-
ing/compressing or to deconstruct and reassemble components in complicated ways.

o Value Relations: These represent time varying transformations of parameters specifying
the musical material. In the preview release these only apply to pitch and velocity values
in the source material. By using a simple envelope that is stretched to fit the extent of the
source material, the composer can shift, scale or invert these source values.

o Filter Relations: These relations pass only some of the source material onto the destination
component. They filter by pitch, velocity and duration, with independent control of each.

e Multi-Relations: These are simply combinations of other defined relations into a single
relation. An arbitrary number of time, value, filter and multi relations can be used.

More sophisticated relations will be provided as the system develops, but even with these
few types, interesting musical ideas can be explored. These initial types have been chosen
since they are generally applicable (at least conceptually) to most forms of musical control
data, whereas other types are likely to be dependent upon the type of information being han-
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dled. For example event based relations (such as retrograde) could be applied to MIDI note
data, but would not naturally be applicable to continuous control information.

Components themselves can be manually stretched and compressed to any duration (within
the limits of the program), which correspondingly stretches and compresses the material con-
tained within them (and their dependent components). Figure 2 shows an example framework.
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Figure 2: A component-relation framework.

In the framework the left hand area contains the transport controls, time information displays
and access to change the duration of the piece. The central area contains the framework with
components as parallelogram shapes suspended on diagonal tracks (time flowing from top-left
to bottom-right). Relations are indicated by coloured lines between components. At the top of
the framework are the controls for each track: MIDI channel/port, mute, solo etc.
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Figure 3: A component editor.
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Components are edited via a simple proportional piano-roll style notation (Figure 3). Inserted
notes use the velocity and duration set by the sliders on the left of the editor. Notes can be
dragged to change pitch and time, the ends dragged to change duration and option-dragged up
and down to change velocity. While this editor is basic it does have some useful features. One
is the variable time grid to which notes can be ‘snapped’. This grid can be any whole number
of subdivisions from 1 to 64. By using different time grids with the snap optton on, it is very
easy to create complex rhythmic patterns of, say, fours against sevens against thirteens.
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Figure 4: A time relation editor.

Relations are modified using various editors. Figure 4 shows a time relation editor. These have
a series of time maps that can be rearranged into any order. Each map has a time line with
draggable markers for specifying the segment of material to capture, a direction button and a
numerical speed factor. In the figure, the relation simply plays the whole source material
backwards then forwards at the original speed. Clicking the expander button on the bottom
time map adds another time map to the relation, and any number can be added in this way.

Figure 5 shows a value relation. The editor uses a breakpoint envelope for specifying the value
modification over time. A popup menu is provided for choosing the type (shift, scale or inver-
sion) and a button selects between pitch and velocity as the parameter to control.

[ Mytnversion : o

X H.200 y 627

clear | revert |

75 Name: {nversion}: sl -

i Update |

Figure 5: A value relation editor.

Figure 6 shows a filter relation editor. This simply has three bar sliders that allow the user to
select a range for each parameter to pass: pitch, velocity and duration. In order to pass non-
contiguous ranges, multiple filters can be applied using a multi relation.
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Figure 6: A filter relation editor.

Figure 7 shows a multi relation editor. It can contain as many relations as desired by the user.
It is similar in appearance and behaviour to the time relation editor, but each row represents a
relation rather than a time map. The relations are applied successively from top to bottom.

0 o " MuttiTest - - =]
;% 1s Fwd-Rev 3

. b [ HalfSpeed %)

D Majne: [MultiTest] { Update } . ’

Figure 7: A multi relation editor.
3.4 Sequence

The sequence layer is not intended as an editing level, but purely as an aid to visualise a com-
plete composition without the structural information carried by components and relations.
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Figure 8: A sequence.
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It uses a simple piano-roll type display of the framework tracks. However, the composer can
add and remove tracks here as well as change performance parameters such as track MIDI
channel/port, mute and solo, and activate the performance controls - play, pause, rewind, etc.

3.5 Stores

Accessible from all levels are the stores. These are simply points of quick access to directories
containing different element types associated with the current workbench. The idea is that a
workbench or framework does not have to have all its associated elements loaded at any one
time. A workbench has the file structure indicated in Figure 9.
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Figure 9: Workbench directory structure.

The workbench is stored in a directory containing the file itself, a sub-directory of frameworks
(only one of which can be loaded at a time) and a sub-directory of elements, which in turn has
sub-directories for each element type — these are the stores directories. A framework itself
saves all of its components and relations independently of the workbench. Currently struc-
fures are not implemented as an element type, but the idea is that these would be frameworks
without any events in their components — a kind of empty template for a part or the whole of
a piece. Clicking a stores button (these are along the bottom of the main window) opens a
window for accessing the files in that particular store, as shown in Figure 10.

Delete |

Figure 10: A (diagram) store.
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To the left in the Figure can be seen the list of items in the store. Selecting one will show a
preview on the right hand side. At the bottom the user can delete the file, add it to the work-
bench, or if it is a relation or component, add a copy of it to the framework. Components and
relations can also be copied between the workbench and framework. Deleting elements from
the workbench does not delete their corresponding files, but these can be deleted using the
stores window.

4 Musical Examples

In this section we demonstrate using simple examples some of the ways in which the frame-
work area of the software can be effective in exploring musical ideas.

4.1 Clapping Music

We start by implementing an abbreviated version (i.e. without repeats) of Steve Reich’s Clap-
ping Music. This is a simple composition written for two performers clapping. The entire
piece is based around a simple rhythmic pattern — ta-ta-ta_ta-ta_ta ta-ta . One part simply
repeats this pattern from start to end. The second part cycles this pattern using the iterative
application of a rule that takes the first beat of the phrase and moves it to the end each time.
This part cycles all the way round until arriving back at the original pattern and plays again in
unison with the stationary part. We can implement this relatively easily in FrameWorks. First
we define a component that contains this rhythmic pattern (Figure 11).
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Figure 11: ‘Theme’ from Clapping Music. Figure 12: The relation for Clapping Music.

We then define a time relation that carries out the transformation, playing the last eleven
twelfths first and the first twelfth last. This is shown in Figure 12. We can then build up a
framework using this single source component and the clapping music relation (plus a built-in
identity relation).
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In the framework (Figure 13), the top left component which is darker than the rest is the
source pattern, which is connected to several following components by identity relations (the
black links) thus creating the static part. It is then connected across to the first component in
the adjacent part with another identity relation. This track then applies the time relation suc-
cessively in order to create the moving part (actually red links indicating this relation).
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Figure 13: Clapping Music framework.
4.2 Extensions to Clapping Music

Having created a framework for Clapping Music we can extend the composition in simple
ways. A first change to make could be to replace the source material. We can preserve or
change the rhythmic pattern or assuming a tuned instrument, rather than a simple clap, we can
use pitched relationships in the source. Here we try using a theme from another Steve Reich
piece, Piano Phase, as the source material (which also uses a pattern in twelve beats) to create
a new work - ‘Piano Music’ perhaps. Figure 14 shows the new source contents, and Figure 15
shows a part of the sequence produced.
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Figure 14: Piano Phase ‘theme’. Figure 15: Start of the sequence ‘Piano Music’.
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Next we take this piece and add a new relation that rotates the phrase in the opposite sense,
i.e. moves beats from the end to the beginning rather than vice versa. This relation is shown in
Figure 16.
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Figure 16: Reverse clapping music relation.

We then add a new track that uses this relation to create a third part that cycles in the reverse
direction to the original moving part, as shown in the framework in Figure 17.
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Figure 17: Framework with anti-phase moving parts.

Finally we again replace the source material, here with an original ‘theme’, shown in Figure 18,
producing a sequence with the opening shown in Figure 19. We can of course experiment by
editing this material freely and immediately being able to hear the results on the entire piece
without having to edit any other information. Thus we can explere different possibilities
within the same musical structure very easily, as well as experiment with different structures
using the same material.

Clearly there are many other extensions we could make using other relation types, modifying
the structure in terms of the number of components and where these are located, etc. These
examples serve to show the fluidity of the system in terms of modifying entire compositions
without necessarily making many changes to the framework.
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Figure 18: Final ‘theme’. Figure 19: Opening of piece using the final theme.
5 Conclusions & Further Research

FrameWorks is an early prototype system developed in order to try out our design ideas and
allow composers to test them in practice. FrameWorks has currently several limitations:

* Flat Structures: There is no support for nesting components within other components to
create hierarchical musical structures. This is necessary in order to handle large-scale musi-
cal works and allows even short works to be represented more effectively. Graphical pres-
entation of the frameworks with added hierarchy would be difficult in a two-dimensional
system and so we will be exploring the use of three-dimensional notations in the system.

e Data Types: FrameWorks only supports MIDI note events and should be extended to al-
low for MIDI controller and other data. In the longer term we hope to develop an open
system that can be used with a variety of data types (e.g. audio, synthesis parameters),
preferably via a plugin architecture. The use of the Java Sound API rather than Midishare
may be useful in developing for a wider range of hardware platforms.

* Notations: The notation systems used are quite primitive and need to be enhanced with
possible multiple notation options.

* Relations: These are limited to a few key types and should be extended to other transfor-
mations. An important enhancement would be to make the system aware of musical keys
so that transformations can conform to key signatures rather than being absolute. Input
from composers and perhaps analysis of extant works will be important in defining these.
Again it would be desirable to use a plugin architecture for these.

* Generation Systems: Currently the composer can only enter events into components by
recording or manual insertion of events. While the system is not aimed at being a true algo-
rithmic composition environment it would be useful to add some support for other means
of generating musical events through processes and constraints (where processes are meth-
ods of value selection and constraints govern what values can be selected).
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o General: There are some general useful features lacking in the preview release that we hope
to add before version 1.0 Final is made available, particularly in terms of full editing sup-
port and on-line help one expects in modern software products. Feedback from users of
the preview release will be taken into account in the development process. There are also
some efficiency issues noticeable with complex frameworks, some rounding problems (due
to a millisecond time resolution) and other current bugs.

In conclusion, we believe that FrameWorks even in its current form provides a novel system
for music composition that offers composers interesting ways of working that in some ways
better reflect the conceptual levels used by composers in composition tasks. While the exam-
ples used here were simple and lent themselves readily to the FrameWorks model, more so-
phisticated and less process driven music can also be created effectively within the system,
although hierarchical arrangements are yet to be supported. We hope to gain substantial feed-
back from composers regarding their use of the system and use their needs as a guide to future
development. As the system develops in sophistication we hope to use it in the analysis of
extant works and believe that it will also provide a useful pedagogical tool for music educators.
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