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ABSTRACT

We hereby present the analytic tools developed as a

MATLAB toolbox for exploring the most subtle features

of piano touch and gesture. From high-sample-rate, high-

precision precision key, hammer and pedal tracking data

about a performance gathered thanks to the Bösendorfer

grand piano-embedded CEUS digital recording system,

the toolbox main functions can extract exhaustive features

detailing the pianist’s touch as a thorough account of nu-

ances in articulation, timing, dynamics, attack and ped-

alling. Each performance and gestural control thereof is

thus described over each of its notes and chords. By com-

paring several performances, it is possible to characterize

the gestural control of expression in piano performance, as

the correlations among piano touch features towards one

examined expressive parameter. The analytic functions

in the toolbox — with piano touch feature visualization

and comparison, chords and notes selection tools, score-

performance matching and advanced, automated statisti-

cal analyses and visualization thereof — allow for rig-

orous, quantitative exploration of expressive performance

and its gestural control, which here is especially applied

towards investigating the use of timbre as expressive de-

vice in piano performance. With these tools, we thus in-

tend to build a gestural mapping of piano timbre.

1. INTRODUCTION

Musical performance is essential to the art and experience

of music. Classical performers, in particular, aim to en-

lighten the composers’ works, as reduced on scores, by

their unique interpretation, thus expressing their creativity

throughout this complex task. This holds undeniably true

as regards piano performance, for which a vast repertoire

has been composed in the few centuries since the incep-

tion of the instrument. An extensive, empiric knowledge

of piano gesture and touch has thus developed within the

pianistic world, to allow for the most vivid expressivity in

piano performance. Many piano treatises, especially in the

twentieth century [15] [18] [12], have provided guidelines

for the most efficient and expressive gesture to improve

the pianist sound. Through systematic studies and inter-

view collections, researchers have highlighted the speci-

ficities of gesture, touch or fingering [3] strategies.

Moreover, along technological progress since the early

twentieth century, new methods and tools have appeared

that allow for a quantitative study of performance gesture.

The first datasets available on piano gesture in perfor-

mances came as rolls recording key movements through

mechanical design, such as Duo-art rolls which were used

notably to study chord synchronization [27] and pedalling

[11]. The Iowa Piano Camera, developed by Seashore

et al. in 1936 for the “Objective Recording and Analy-

sis of Musical Performance”, could measure hammer mo-

tion and velocity with an elaborate, embedded slit-and-

film system, and was used to analyze several dynamic,

rhythmic/temporal and structural features [24]. Both sys-

tems could thus give out piano rolls indicating for each

note the key depressed, its onset and offset (and thus du-

ration), and in the last case, hammer velocity. In fact, this

constituted a primitive version of the 1981 MIDI stan-

dard data. The subsequent MIDI recording pianos such

as Yamaha Disklaviers, with the same but way improved

pianoroll-like data acquisition abilities, vastly eased the

quantitative recordings of some piano performance ges-

tures. This way, systematic studies by Repp [22] [23],

Parncutt [20] [21] and Goebl [5] [6] [7] among others, of

such expressive features as timing, dynamics and articu-

lation, have given us a better grasp the role of gesture in

expressive piano performance.

Yet due to the limits inherent to the MIDI standard [17]

with regard to the amount of information available on pi-

ano touch control, other technical methods of measure-

ment have been called upon. In particular, and as early as

1929, Ortmann devised a mechanical recording system,

involving springs, levers, a dynamograph and revolving

drum, that could acquire continuous measurements of key

motion and represent them as curves detailing the slight-

est fluctuations. It was thus used to study piano touch and

tone [19] and determine the variations in touch, as key

motion, for a single note with different tones intended. A

few years later (1934), Hart, Fuller and Lusby [10] used

an optical system to track hammer motion, and a mechan-

ical key striker to identify the effect of various controlled

key strokes on hammer motion and the acoustic signal.

Nowadays, equipment used to record expressive ges-

ture in piano performance may include motion capture

[26], sensors [9], or UV hand paint and lighting [14]. Such

designs enable to acquire pianists’ gesture as a whole, in
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order to characterize musical embodiment or physiolog-

ical features. As regards the instrumental gesture itself,

that is the efficient part of performance gesture that con-

veys energy directly to the keys, recent recording pianos

have expanded over MIDI limitations and propose highly

accurate tracking of key (and pedal) depression and ham-

mer movement. Such detailed information is actually re-

quired for analyzing the subtle nuances involved in some

aspects of piano performance, among which timbre and

tone control.

2. AIMS

As our main research project indeed aims at understand-

ing high-level pianists’ ability to control timbre and tone

in their performances according to their musical and emo-

tional intentions, we investigate how the most fine-grained

properties of pianists’ touch are nuanced within musical

performances, in order to obtain different timbres. Yet

such nuances necessitate highly precise data from which

the intricacies of key strokes can be thoroughly assessed.

Such is the data that can be acquired by the Bösendorfer

CEUS piano digital recording system. In order to analyze

this fine-grained data, we have aimed to develop a dedi-

cated MATLAB toolbox including a set of functions that

we are hereby describing in this paper.

3. HIGH-RESOLUTION DATA ACQUISITION

The CEUS system we used is embedded in an Imperial

Bösendorfer grand piano (Figure 1). 1 The system in-

cludes optical sensors behind the keys, hammers and ped-

als, microprocessors and electronic boards (Figure 2) that

process sensor data and send it to an embedded computer

into whose hard drive data is stored. CEUS is also a re-

producing system, with solenoids attached to each key for

replicating the exact motion stored from a human perfor-

mance. The system tracks keys and pedals position (via

their angle relative to rest level) at a standard rate of 500

Hz, and over 250 steps (8-bit encoding), which roughly

means for keys a 40µm tracking accuracy for the point

of the key (or about 30” for the key angle). As for ham-

mers, two sensors monitoring the hammer ballistic travel

towards the string give out its maximum velocity after it

is launched by the key.

These datasets are recorded as binary files, wherein

successive data chunks correspond to each timestamp —

one every two milliseconds. Each chunk starts with a

break code (255), followed by a 24-bit value indicating

milliseconds since the recording start. It is followed by a

series of 16-bit blocks, one for each key, pedal or ham-

mer activated at this timestamp. Each block first contains

the 8-bit number of the key depressed (as in MIDI, with

the central C4 equal to 64, and up to 108), or pedal (109

1 This piano is installed in a dedicated studio at BRAMS (Interna-

tional laboratory for Brain, Music and Sound research), Université de

Montréal. (http://www.brams.org)

Figure 1. Imperial Bösendorfer grand piano in the

BRAMS studio, with embedded CEUS system.

Figure 2. Details of the CEUS system: fallboard display/

interface and embedded electronics.

to 111), or hammer (MIDI-key number + 128). The sec-

ond 8-bit number gives out key/pedal position or hammer

velocity. Datasets are stored under the .boe extension

format.

The Bösendorfer CEUS recording system thus consti-

tutes an extremely precise tool to observe the finest sub-

tleties in pianists’ touch and measure the part of gesture

actually efficient and transferred to the piano action. How-

ever, in order to get a clear understanding of piano touch

peculiarities involved in one performance, the raw data

must be processed in a more intelligible way. This is the

role of the primary functions in our toolbox.

4. DATA PROCESSING

4.1. From streamed data files to piano rolls

The first requirement in the chain processing that would

lead to a thorough a posteriori analysis of boe files, is

to parse the raw files into MATLAB matrices. Binary-

to-decimal conversion is handled by MATLAB, and our

function extract.m deals with identifying each data

chunk relative to one timestamp, essentially by finding

the break tags “255”, then storing timestamp-and-value

(of key or pedal depression or hammer velocity) data cou-

ples on one line. The parser can also deal with the older

boe format, wherein data is encoded in ASCII with hex-

adecimal numbers. We thus get a streamline of events that

happened in the recorded performance.

Yet data is easier to use and interpret once restructured
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Figure 3. Pianoroll display of a performance (detail),

wherein key motion is shown as blue lines, MHVs as red

vertical arrows, and sustain pedal in light blue.

in a key-by-events matrix, wherein each line corresponds

to one key/pedal/hammer, with its MIDI-like number as

referent, and successive blocks indicate each event with its

timestamp and value. From a timestamp-driven structure,

the notetime.m function thus reorganises data into a

key-by-key account of events. Special attention is given to

correcting for possibly missing information, such as one

key being depressed at two timestamps t and t+4 yet miss-

ing information at t+2. In all, missing or redundant times-

tamps are filtered, as well as singleton events. 2 This

structured data is exported into a text file.

The data format is especially useful to get a visual rep-

resentation of the recorded performance, in the form of a

piano roll. To this aim, the pianoroll.m function can

display keys and pedals motion, one line for each, along

time. All recorded maximum hammer velocities are dis-

played for their relative key, with a red vertical arrow (Fig-

ure 3). This gives out the graphic equivalent of the well-

known MIDI pianoroll display, but with the exact level of

key depression instead of a fixed-velocity block per note.

However, within this data structure and pianoroll dis-

play, we can only observe the high-precision linear re-

sponse from each key motion, and do not have direct in-

formation on the most basic musical structure, that is, the

note. While visually obvious, this basic information we

get immediately in MIDI here has to be retrieved through

additional processing.

4.2. Retrieving notes

As events (key angle) are only registered when the key is

out of its rest position, we can essentially retrieve note on-

sets by finding discontinuities in the timestamp sequence

related to one key. Note onsets thus occur whenever two

consecutive, timestamp-and-value blocks stored in “note-

time” files possess non-consecutive timestamp values (i.e.

separated by more than 2 ms). This process is run in the

notes.m function, while improved with correction pro-

cedures for missing timestamps (up to 8 ms deep) and

2 This procedure has essentially become a precautionary tale, as with

the latest CEUS software updates such acquisition errors have been all

but eliminated.

noisy information at note onset — e.g. a key somewhat

being pushed down of less than a millimeter when the pi-

anist sets his finger on top of it in preparation for the next

note — which could shift onset time towards way earlier

than actually performed. Retrieved notes that prove too

feeble to launch the hammer and produce a sound are also

filtered out. Moreover, the note-detection function can ac-

count for successive notes played on the same key, with

the second note starting before the key is fully released

from the first. Indeed, the double escapement action fea-

tured on grand pianos allows for faster note repetition af-

ter just a partial key release, down to a threshold called

escapement point. As such two notes are not separated

in the data by a discontinuity in timestamp sequence, we

used a forward-loop exploration of local minima. The es-

capement threshold was assessed empirically through per-

formance corpus analysis, and could be set at 140 (upon

250). Local minima lower than this threshold define the

onset of a new note.

Once the notes thus identified, we set on exploring the

upper-level musical structure: chords.

4.3. Identifying chords

The function chords.m identifies groups of notes which

have near-synchronous onsets. The task is performed in

two rounds. First, a group of notes is formed when their

onsets are less than 50 ms apart. A chord is thus defined,

whose onset is defined as the earliest note onset. Another

note can then be assigned to this chord if it provides the

best-fitting, under-50-ms onset timing difference. This en-

sures the most synchronous notes are grouped together.

In the second round, chords can be merged if any of the

note onsets (instead of the earliest) within one chord falls

within a looser interval, 100 ms, of any of the note onsets

from other chords. The 50 and 100 ms onset synchronism

intervals are consistent with mean and upper-bound val-

ues found by Repp [22] and Shaffer [25] and were tested

empirically for matching between the chords identified in

a corpus of performances and the designations in their re-

spective scores.

Additionally, in the context of our target experiment

which involved four different pieces, we were able to set

thresholds for separating the range of each hand — that

is, a note above which the left hand, and below which the

right hand, never play. Chords could thus be separated by

hand.

From the high-precision response tracking of key and

pedal depressions and hammer velocities, we thus retrieve

the fundamental musical structure of notes and chords. 3

This allows us to get back up to MIDI-like note identi-

fication, add the definition of chords, and deal with the

fine-grained information through reduction to exhaustive

and relevant features set to describe each note and chord.

3 The notion of “chord” is hereby used loosely, as it can account for

a single note when not deemed synchronous to any other note played by

the same hand.
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Figure 4. Illustration of some essential note features.

5. PIANO TOUCH DESCRIPTIVE FEATURES

Our toolbox also provides a thorough analysis of notes

and chords, and extracts numerous features from the high-

precision, 500 Hz tracking of keys and pedals depression

and maximum hammer velocities record. The exhaustive

information related to each musical structure of note or

chord is reduced to a large set of features most relevant to

understanding piano touch. The most relevant features to

set alight were chosen on the basis of studies of various

aspects of expressive piano performance that used MIDI

data [22] [23] [2] [6], as well as studies focused on pi-

ano touch [19] [21] or keyboard action [16]. We have pro-

grammed, adapted, extended or added descriptive features

which can be sorted in several broad categories: dynamic

level, attack speed and type, duration and sustain, release,

synchronism, intervals and overlaps, and pedals use.

5.1. Single note features

Each note is individually described by 46 features. First

are its basic characteristics (Figure 4): key number, onset,

offset and duration; maximum hammer velocity (MHV),

maximum key depression angle (Amax) and their corre-

sponding timestamps. From these are calculated several

attack-descriptive features: attack duration (related to in-

stants of both Amax and MHV), attack speed (as a ratio

of Amax or MHV to its duration), and timing between

Amax and MHV. Those features assess the attack as a de-

scription of dynamic level — the faster the attack and the

more synchronous Amax and MHV, the higher dynamic

level is.

Attack type can also be defined as percussive or not.

Indeed, as Goebl et al. have shown [6] key trajectory

differs whether the key is pressed, with the finger ini-

tially resting on the surface of the key, or struck percus-

sively, with the finger starting above the key and reaching

it with a non-zero velocity. The struck touch displays a

fast initial key depression that slows down until reaching

(or not) the keybed, while a pressed touch has the key de-

pressed slowly first and gradually accelerating. We used

two methods to elicit this behaviour: the ratio of key de-

pression at half the attack duration to the maximum key

depression, and the mean key depression during attack —

akin to the area swept by the key depression curve dur-

ing attack. Both features will have higher values with a

percussive touch.

Two other ways of assessing the note profile were de-

signed. First, critical points akin to the acoustic temporal

envelope were retrieved, thus defining up to four zones in

key depression: attack, decay (a short drop up in key de-

pression certainly due to the reaction of the keybed felt,

and found in many notes), sustain and release. Attack,

sustain and release durations and ratio to the total note du-

ration were thus assessed. And second, we defined empiri-

cally a threshold over which the key can be deemed deeply

depressed. From there we could define three sections, and

their durations, the first before the key reaches the thresh-

old, then while the key is depressed over the threshold,

and when it falls below it — akin in most cases to attack,

sustain and release respectively.

Finally, we gathered sustain and soft pedals use during

the note: for each, their duration of use and amount of

depression during the note, as well as their depression at

note onset, offset and at the instant of MHV.

5.2. Chord features

Each chord is first described by basic features: number

of notes within, its onset and offset (earliest and latest of

its note onsets and offsets resp.), duration and maximum

of its note Amax and MHV. Then, each of its notes is as-

signed, besides its 46 individual features, 10 additional

characteristics of its synchronism towards the chord: note

onset lag on chord onset, its ratio to the chord duration,

and the onset lag amount (defined as the sum of all other

keys depressions within the chord before the onset of the

target note); note offset lead, ratio and amount with regard

to chord offset (defined in the same way); its synchronism

with the chord as ratio of note duration to chord duration;

and its synchronism amount, defined as the ratio of the

total amount from which the other notes within the chord

are depressed for the duration of the target note, compared

with their total depression amount. Each note within a

chord is thus described by 56 features.

And each chord in itself is also described by 56 other

features, with descriptions of internal synchronism and

pedal use in addition to the primary features explained

above. Indeed, the smallest, non-zero note onset lag de-

fines the chord melody lead (how early the first note is

compared with the next), and the smallest, non-zero note

offset lead sets the one-note trail within the chord. As for

soft and sustain pedals use, both are exhaustively featured

as follow: duration and amount of depression during the

chord; duration of deep-depression and mid-depression

(when pedal depression level falls above or between cer-

tain thresholds, resp.); and assessment at chord onset and

offset of pedal depression levels, activation (on or off) and

timing (how long before or after the pedal was or will be

activated).
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Figure 5. Pianoroll display of successive (framed) chords

with their interval and overlap relations pointed out.

Finally, the following features assess the relations be-

tween chords. First, intervals are measured: inter-onset

interval (IOI) from one chord onset to the next, interval

from chord offset to the next chord onset (OffOnI), and its

direction — negative indicates legato, positive staccato.

Then, overlaps between chords are defined through their

duration (how long one chord is overlapped by others),

amount (of depression) and number (of chords in overlap

with the target) (Figure 5). All those features of intervals

and overlaps are calculated with regard to any chord (in

onset temporal order), to same-hand chords only, and to

chords played the other hand only. This is meant to elicit

different articulation strategies.

In all, each multi-note chord is described by 56 chord-

specific features, plus the mean and standard deviation of

the 56 features describing each of its notes. This thus

amounts to 168 features per chord. 4 Such an exhaustive

account clearly states the depths at which the CEUS sys-

tem lets us observe piano performance, and gather quan-

titative information about piano touch and its dynamics,

percussiveness, articulation, depth, timing, pedalling,etc.

This features extraction is processed within the func-

tions notes.m and chords.m (the latter calling the for-

mer), and is output in a three-dimensional, chord-by-note-

by-feature matrix. For each chord of n notes, there are

(n+3) vectors, the first being the features describing the

chord itself, the second the mean of its note features and

the third their standard deviation. Additionally, the mean

and standard deviation of all chord features gives out a

description of the performance, as a whole, through 322

characteristics. Moreover, each performance is similarly

described with regard to left-hand chords only, right-hand

chords only and left-vs-right hand differences. The results

4 In the case of a single-note “chord”, due to redundancy and no stan-

dard deviation, there remains 85 valid descriptors.

Figure 6. Chord selection interface, wherein a black tar-

get cursor (here centered around key 74 and timestamp

4500) indicates which chord a click within the frame will

select.

matrix can also be printed out as a formatted text file (re-

structured in 2D), or as two separate files accounting for

chords alone and notes alone, resp.

6. ADDITIONAL FUNCTIONS

In addition to the main chord-and-note structuring and

feature extracting functions, the toolbox also contains sev-

eral analysis tools.

6.1. Selection

First, subsets of chords or notes can be selected with the

select_chords.m or select_notes.m functions.

There are two ways of selecting the subset: either by in-

dicating notes or chords to select in a matrix or text file

called as input argument, or graphically, by clicking on

the chords/notes one wishes to select on the pianoroll dis-

play of the performance. With the first method, most use-

ful for batch processing, notes to select are to be spec-

ified, each on one line, by their key number and times-

tamp falling between their onset and offset. The same is

asked for chords to select, and here any key number falling

within the range between the lowest and highest notes in

the chord can be used as referent. In case such coordinates

could refer to more than one note or chord (due to over-

lap), the closest fit in time range is selected. The graphical

counterpart method works essentially the same way, with

each click on the note or chord to select within the pi-

anoroll figure sending back a key number and timestamp.

Chord selection by click is eased by the framing of all

chords in the pianoroll figure (Figure 6). The function

then retrieves the features describing each selected note or

chord, and calculates means and standard deviations over

the subset. It outputs a 3D results matrix similar to the

main performance-features matrix previously described,

with the same printout options. This way, one can assess

local characteristics within a performance.
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Figure 7. Graphical display of one performance piano roll

(detail) and evolution over time of selected features.

6.2. Graphical feature representation

In order to visualize the evolution of features over the du-

ration of a performance, the g_pianostats.m func-

tion plots the normalized feature values against the perfor-

mance pianoroll display. First, a graphical user interface

allows to select the features to plot and specify some op-

tions (hand separation, error bars for note features). The

value of each selected feature, for each chord, is then plot-

ted over time at the instant of chord onset (Figure 7). With

the pianoroll as reference, one thus can see the evolution

of the feature along the performance, and possibly iden-

tify its relation to the musical structure — e.g. phrasing

— of the piece.

The second function, g_compare.m, is a graphical

comparison tool, in time, of several performances. The

same graphical user interface is used to select the features

to display. For each selected feature, a separate plot tracks

its evolution in time within each input performance, and

compares its mean value within each performance. This

allows to identify what differs between performances, and

especially when differences occur (Figure 8).

6.3. Score matching

This function is aimed to assess the fit between two perfor-

mances or between a performance and its score. It com-

pares the notes identified in one performance to another, or

Figure 8. Comparison in time of 2 performances for 2

features, and mean thereof.

to the score (rendered as MIDI). The function only com-

pares MIDI-like information of key number, onset, dura-

tion and velocity (MHV). It is an adaptation, with our cus-

tom, derived CEUS-data complying parser, of Ed Large’s

score matching functions 5 [13], essentially intended to

assess performance errors (such as missing notes).

The function returns a graphical display of two cor-

responding MIDI piano rolls, wherein each note within

one performance is linked to its corresponding note in the

other performance/score. The cross-correlation matrix of

the two performances/score in time is also displayed, and

we added the calculation of a matching rate, which in-

dicates the percentage of notes that match (in key num-

ber, timing, duration and velocity) between the two per-

formances.

6.4. MIDI to boe conversion

Last but not least, we designed the boe_gen.m function

to generate CEUS boe format files from MIDI input. First,

the MIDI files are parsed into MATLAB variables with

Ken Schutte and Tuomas Eerola midi2nmat.m func-

tion, from which output we conserve each note with its

key number, onset, duration and velocity. MIDI velocity

(7-bit) is linearly converted to CEUS MHV (8-bit). Our

function can also directly take text files as input that use

the same format as midi2nmat output. Instant of MHV

can also be specified as a fifth parameter. If not (or MIDI

input), instants of MHV are extrapolated as an empiric

function of MHV and duration.

5 Available online at https://www.jyu.fi/hum/laitokset/musiikki/en/. . .

research/coe/materials/miditoolbox/matchingPerformancetoNotation.zip
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Then, boe files can be generated with a straight ren-

dering of the input information, that is, with MIDI-style

notes of constant MHV/velocity along their duration, and

a crenelated outlook. Yet the function can also generate

more realistic boe files wherein key depression patterns

are rendered as if key motion were precisely tracked. De-

pending on the input parameters, each note is assigned

one of three fine-grained note prototypes each represent-

ing a typical key depression profile — as commonly iden-

tified in CEUS boe recordings. The note prototype is then

warped by polynomial interpolation so as to fit the note

input parameters, with longer durations accounted for by

stretching the sustain phase (thus keeping attack and re-

lease in valid forms). The key-by-events “notetime” ma-

trix is first created, and then transcribed in the output boe

file.

This MIDI (or MIDI-like) conversion and/or augmen-

tation into the CEUS system boe format has proven useful

for testing the feature-extracting functions, and for com-

paring performances, feature-wise, to the “flat” reference

of their MIDI-rendered scores.

7. APPLICATION: ANALYSIS OF PIANO

TIMBRE GESTURAL CONTROL

7.1. Context

Amongst the various aspects of expressivity in piano per-

formance, our research project focuses on timbre, and the

control thereof through subtle nuances of touch and ap-

plied gesture. In order to investigate this timbre and tone

dimension so widely acknowledged within the pianistic

community as central to the art of piano playing [18] [4],

we designed an experiment set in a musically relevant con-

text. This has let us explore farther than the single-note

studies which helped reinforce the long-held notion within

the scientific world that mechanical constraints limited pi-

ano timbre control, for a single, isolated piano key, to

the sole intensity of key stroke [10]. The study thus fol-

lows the groundbreaking, yet somehow overlooked, work

of Ortmann [19], who could identify different patterns of

key depression depending on tone intentions. He also

posited that tone combinations and blends, when several

notes are played simultaneously or successively and ped-

als are used — as is the case in musical context — add

so many possibilities and factors of tone control [8]. We

thus explored how features of articulation, timing, dynam-

ics, attack, touch percussiveness, pedalling, and so on are

nuanced in musical performances in order to produce dif-

ferent tones and timbres.

7.2. Method

To this aim, we first identified five timbre descriptors most

salient and representative of the piano timbre range [1]:

Dry, Bright, Round, Velvety and Dark. Four miniature

pieces were composed so that each could be fittingly per-

formed with each of the five timbres. And with the CEUS

data acquisition system, we could record performances

by four pianists with professional experience. They each

played each piece, tree times with each of the five timbres.

We thus compiled 240 boe recordings, from which we ex-

tracted the exhaustive characteristic features thanks to our

Bosen Toolbox.

7.3. Analysis

We then set to compare all performances through their

mean features, with regard to their respective timbre. To

this aim, we developed several analysis functions as an

extension of the Bosen Toolbox. These functions allow

for automated processing of all features through several

statistical tests from MATLAB Statistics Toolbox.

The main function performs several variance tests over

each feature, with timbre as factor. The three tests used

are one-way ANOVA, Welch robust test of equality of

means, and Kruskal-Wallis non-parametric rank analysis

of variance, with the assumptions required for test va-

lidity (normality of same-timbre groups distribution for

ANOVA and Welch, and Levene’s homogeneity of vari-

ance for ANOVA) tested as well. For each feature, with

the p-value of the most powerful test whose assumptions

are not violated as indicator of significance at the .05 level,

we thus know whether this feature significantly varies de-

pending on timbre, and therefore whether the feature can

be useful in determining the timbre performed. If so, post-

hoc tests (with Tukey’s honestly significant difference cri-

terion) are run to determine the timbre pair-wise signifi-

cance for the feature, that is, which two timbres among

all pair combinations the feature values can set apart from

one another. All those results, for all features, are returned

in a table.

In addition, the normalized means and standard devi-

ations over all performances of same timbre are calcu-

lated, for each timbre and each feature. Those values can

be graphically compared with a linear plotting function.

Moreover, normalized feature values, regrouped by tim-

bre, can be directly and more thoroughly displayed as box

plots. Finally, the same information can be represented as

a Kiviat graph — a.k.a. "radar" or "cobweb" chart.

Furthermore, a function was designed to perform Prin-

cipal Component Analysis over all significant features.

PCA identifies, one by one, the linear combination of fea-

tures (with individual weights assigned) which can ex-

plain as much of the total variance (or of the remaining

variance) as possible. Within the space thus defined by

those dimensions, each performance possesses its own co-

ordinates. Our function selects all dimensions that explain

a large enough chunk of the total variance (over 10%),

and traces all the plans formed by the remaining dimen-

sions, with the performances (color-tagged for timbre) set

therein according to their coordinates. The description of

those dimensions as linear combinations of the significant

features is also stored. This method thus gives a rapid

way to identify which combination of features is best able

to differentiate between timbres.
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7.4. Results

All these methods and processes were applied to the per-

formances recorded for the experiment and their gestural

descriptors extracted with the Bosen Toolbox. We sep-

arately analyzed the whole set of descriptors, and their

means and deviations per performance, for full perfor-

mances, for their left- or right-hand chords only, and for

performances grouped piece by piece and pianist by pi-

anist. While the complete interpretation of these exhaus-

tive analyses is still currently under way, we have already

identified significant correlations of several gesture de-

scriptors to the timbre performed. The eight most repre-

sentative among all significant timbre-discriminating ges-

tural features are displayed as a Kiviat graph (Figure 9).

Thus are elicited the different strategies in dynamics, ped-

alling, articulation, rubato and touch employed to perform

a certain timbre. We can thus gather how piano touch

and gesture features were used to control and vary tim-

bre nuances. For instance, a counter-clockwise account

of the Kiviat graph, starting to the right, indicates that

playing with a velvety timbre required low yet quite vary-

ing dynamics, variation in attacks, heavy use of the soft

pedal and to a lesser extent of the sustain pedal, a lot of

legato, rather stable chord durations (non rubato) and a

very soft, non-percussive touch. By comparison, playing

dark, while most similar to playing velvety according to

those eight gesture descriptors, involves a little more dy-

namic power and less variations, while speeds of attack

still vary greatly. 6 The sustain pedal is used more, and

the soft pedal less so. The articulation is even more legato,

while the dark touch is much more percussive than the vel-

vety touch.

The results thus consist in effect in the gestural map-

ping of piano timbre, to the extent of the gesture descrip-

tors extracted and the timbres considered. The coarse tim-

bre mapping with only these eight select features still al-

lows for a unique description of the five timbres. More

thorough analyses, involving more gesture descriptors for

a finer account and interpretation of timbre gestural map-

ping, are in the works.

8. DISCUSSION

The Bosen Toolbox was developed to make the most use

of the high-accuracy, high sample-rate Bösendorfer CEUS

key/hammer/pedal tracking system data, and to offer an

exhaustive and thorough account of piano touch and ges-

ture, through meaningful features that can be interpreted

in a musically relevant way.

Moreover, the toolbox statistical functions allow for

analysis automation, and can be easily adapted to studying

whichever performance factor, with a single configuration

file to define all variables.

6 Variations in hammer and key attack velocities resp. may not be

linearly correlated, although they both concern the same broad-sense ac-

tion, because they can be affected differently by differences in dynamic

register and touch percussiveness.

Figure 9. Kiviat plot of the eight most representative

timbre-discriminating gesture descriptors (shaded zones

correspond to ± 2 S.E.).

And, while the toolbox was especially designed for the

CEUS data format, it could conceivably be used with any

similar high-precision equipment, capturing the keyboard

discretized per key (up to 108 discrete units) on one di-

mension, and high-accuracy key depression tracking on

another. For instance, a high-frame-rate video tracking

system could be positioned in such a way that its field of

view would encompass a whole keyboard and key depres-

sions would be visible (e.g. with the camera set at one

end of the keyboard, or somewhere below it). The same

would hold true for a motion capture system with reflec-

tors installed on each key. More creative designs could

also be conceived that do not even involve a keyboard. . .

To those ends, we plan on making the Bosen Toolbox,

once finalized, available online — as a set of MATLAB

m-files — under GNU licence. For now, the toolbox can

be sent upon request.

In conclusion, the Bosen Toolbox is meant to help bet-

ter understand the subtle nuances in expressive musical

performance through which artists masterfully manage to

convey emotion and feeling.
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