
THE HORIZONTAL SPACING OF GRAPHICAL NOTATION

Mike Solomon

The University of Florida
School of Music, Gainesville, FL, USA

mike@apollinemike.com

ABSTRACT

While several articles have explored the automated spac-
ing of a line of music, little attention has been paid to the
automated spacing of graphical notation in the horizon-
tal domain. This article proposes an algorithm to stretch
and compress images so that they are able to be integrated
into a traditional horizontal spacing model while still at-
taining certain “target points” in a score. This is done via
a linear program that distributes stretching error over the
graphical object. The linear program is described through
a presentation of its constituent matrices along with sev-
eral musical examples that demonstrate its functionality.
The article concludes with ideas regarding the program’s
broader applicability to the domain of graphical notation.

1. INTRODUCTION

Since the ascendence of graphical notation in the 1960s,
a major concern for composers and engravers alike has
been the most efficient and musical manner to mix graph-
ics with traditional notation. Thus far, three major ap-
proaches have emerged. The first, used by Mark Apple-
baum in hisOn the Metaphysics of Notation, is to create
scores that make use of both traditional and unconven-
tional glyphs without specifying ordinal relationships be-
tween these objects. A second approach, used throughout
Cornelius Cardew’sTreatise, is to use locally-traditional
snippets of notation that are merged into a document with
an unconventional layout. A third approach, used by Krzys-
ztof Penderecki in his operaDiably Z Loudun, is the inte-
gration of non-traditional glyphs and images into the lay-
out of a traditional score (time on the X-axis, instrument
and pitch on the Y-axis).1 Because of the highly individ-
ualized nature of these artworks, it is difficult to propose
any unifying digital tool that can help composers auto-
mate certain aspects of their layout decisions. Headway
has been made by libraries such asBelle, Bonne, Sage[3],
which provides an easily-callable collection of rescalable
musical glyphs. However, context-agnostic tools such as
this do not draw upon the many musical engraving con-
ventions to which performers have grown accustomed, de-

1In this taxonomy, I am excluding works such as Stockhausen’sZy-
klus, which uses a system of organized glyphs that is intended to com-
municate precise musical information. In the present study, “graphical
notation” refers to ambiguous notational schemes that are intended to
evoke an interpretive response above and beyond that which “traditional”
notation could presumably engender.

manding a significant coding overhead from the user wish-
ing to mix received knowledge with experimental nota-
tion. This paper offers a partial solution to this problem,
using a smoothing algorithm that adapts vector graphics
to the dicta of conventional horizontal spacing as devel-
oped in [16], [18], [4], [8], [2], [9], [7], [17], and [1]. Said
algorithm uses linear programming to constrain a graphic
so that it attains certain horizontal “target points” along
a line of music, smoothly distributing displacement error
over the graphic so that it is minimally distorted from its
original version and so that any distortion is not localized
at the target points to which the graphic is anchored.

The paper will proceed as follows. First, it will survey
canonical literature on horizontal spacing in engraving,
according special attention to the algorithmic automation
of this task. It will then propose a model for the horizontal
spacing of graphical notation that uses data from this gen-
eral spacing model. Finally, it will present examples of
this algorithm’s results and provide suggestions for future
research.

2. HORIZONTAL SPACING

This section explores horizontal spacing from a traditional
engraving approach. After surveying common horizontal
spacing practices in music engraving, it then summarizes
a popular horizontal spacing algorithm [8] that has been
implemented by several digital engravers such as Lily-
pond [15] and GUIDO [10].

2.1. Traditional Horizontal Engraving Considerations

Horizontal spacing is traditionally calculated based on two
principal constraints: fixed distances between glyphs (here-
after called ‘rods’) and variable distances between adja-
cent glyphs (hereafter called ‘springs’). Ross [18] dis-
cusses the use of several of these rods in traditional mu-
sic engraving, such as the standard distance between clefs
and noteheads and the standard distance between clefs and
time signatures (see Figure 1). Read [16] establishes a
precursor to the present-day notion of springs through his
charts of least-common-multiple relationships between du-
rations (see Figure 2). Few canonical engraving texts,
however, confront the issue of the area of music over which
these calculations are relevant. Instead, they give exam-
ples that function within fixed widths that are often a mea-
sure long. Algorithmic horizontal engraving has sought to

mailto:mike@apollinemike.com

Figure 1. “Rod” spacing suggestions by Ross [18, p.
145].

Figure 2. Reproduction of a horizontal spacing configu-
ration showing a 5:8 metric division [16, p. 201]. This
method of partitioning the horizontal space has been gen-
eralized via the [8] algorithm.

remedy this problem with a Spring-Rod model that can be
applied to various lengths of staff space.

2.2. Algorithmic Horizontal Engraving

The issue of horizontal spacing in computer typesetting
was first given comprehensive and publicly-available schol-
arly attention by Gourlay [8], who proposed a Box-Glue
model2 in which horizontal spacing of objects on lines of
music is initiated by applying force to a line of notes with
springs and rods between them and evaluating where these
objects come to rest when the springs reach an equilibrium
point after the force has dissipated. Haken and Blostein
[9] introduce the terminology ‘Spring’ and ‘Rod’ to de-
scribe the Gourlay model, refining it to perform better in
its handling of rods, and Renz [17] offers an improved al-
gorithm that treats objects on the line as “neighborhoods”
with flexible borders that can be adjusted over multiple
passes of the Gourlay algorithm.

Currently, one of the more comprehensive versions of
the algorithm, which takes into account all of the major
research on the subject, is found in GNU Lilypond. Nien-
huys [14] summarizes the algorithm as such:

• Each time-point gets a paper column that includes
simultaneous events. For example, notes in a chord,

2This model is itself is based on the one developed for text layout in
TEX [11].

articulations, dots, and accidentals all may fall into
one column. This column takes into account poly-
phonic voices and multiple systems.

• The spacing engine computes an ideal for each col-
umn. This position takes the form of a spring of
ideal length with a stretch factor to account for dif-
ference in fixed space (symbols) and stretchable space
(white space between symbols) upon stretching or
compressing.

• Springs are only implemented between adjacent columns.
Each column pair has just one spring.

• Arbitrary (including non-adjacent) columns may spec-
ify minimum distances (rods) that represent the min-
imum widths necessary for preventing collisions.

• In monophonic situations, spacing is counted from
the left edge of the note head to the next left-edge
of the head (assuming that there are no chords with
seconds or unmergeable unisons in them – other-
wise, different spacing constants are applied that
represent the expanded horizontal extent of the col-
umn).

• The common shortest noteS in a piece is spaced
with 2W, whereW is the width of a black notehead.

• Spaces are logarithmically assigned, so ifS is the
common shortest duration in the piece, thenD(2S)=
3W, D(4S) = 4W etc., whereD is a function calcu-
lating the duration space.

• Calculate the shortest duration for each measure.
The common shortest duration (CSD) is the one which
appears in most measures. This is to prevent a sin-
gle short note from stretching the entire piece.

• For durations R shorter thanCSD, the space isW+
W×R

S .

• For polyphonic situations, the space isDT
SP×D(SP),

whereSP is the shortest note playing at that time
point, andDT is the time difference between the
columns.

• Spacing from the first clef to the first note retains
a constant space (or rod) irrespective of the results
above.

• The final result is achieved by applying force to fi-
nal column in a line (for example, a double bar-line)
and letting the force move through the springs un-
til the upper and lower bound on the measures for
a given system become equal. Optimal line breaks
are calculated based onCSDas defined above.

Because this algorithm calculates line breaks based on the
shortest duration in an entire work, it achieves a sense of
global visual constancy that would not be possible if line
break decisions were exogenous to the Spring-Rod model.

The choice to do this is, of course, a subtle aesthetic one,
and the unity it confers onto a piece’s layout is not im-
mediately perceptible to the musician reading through a
work. However, a crucial argument in favor of this ap-
proach centers around spanners, a group of musical ob-
jects that is only cursorily treated in the above-cited arti-
cles on horizontal spacing. Spanners, such ascrescendo
anddiminuendomarkings, beams, slurs, andottava indi-
cations, have the ability to reach over systems — and in
certain extreme cases over long spans of pieces — to unite
disparate regions of a score. While theGestaltmecha-
nism that tells a reader that notes “belong” to a slur may
not lead her to desire uniform spacing across line breaks,
other groups, like beams, have a strong grouping effect
on the notes they contain because of the way they shape
how performers cognitively assimilate musical informa-
tion. Cole [5] writes:

When we read our own language, we recog-
nize familiar word-profiles, pick up clues as
to function and structure of sentences from
characteristic successions of letters or words.
We recognize grammatical situations as we
recognize faces – not by this or that detail,
but on an over-all basis. The same process
applies in music reading.. . . One of the great
advantages of the graphical features on the
notational map is the advance warning that
we get of the approximate density, direction,
and type of movement from a single glance at
the bars ahead (pp. 23–26).

It is thus natural that we would want different regions of
the same beam, which may cut across several line breaks,
to be as uniform as possible in their representation of the
“densities” about which Cole speaks.

In this context, the relationship between graphical no-
tation and a piece-wide Spring-Rod algorithm takes on vi-
tal importance. If a composer creates a graphic that is
supposed to hit certain target points — or span — over a
piece that spans multiple lines, one would assume that the
composer would want consistent spacing rules that con-
trolled the horizontal layout at all of these target points.
Otherwise, the composer would have difficulty estimating
how much staff space the graphic would occupy over its
duration, and furthermore, slight changes to the content
of a line would potentially result in appreciable changes
in the layout of a graphic that spanned several lines. By
using the horizontal spacing algorithm presented above to
smoothly stretch and contract graphical notation, one can
engrave images that are spanned across large regions of a
score without sacrificing the traditional horizontal spacing
from which performers glean crucial musical information.

3. THE GRAPHICAL NOTATION ALGORITHM

This section will present how a graphical notation algo-
rithm, by horizontal spacing data, can smoothly engrave
graphics in scores. It will first develop a linear-program

'
3

' ' �44 ' ' �

vector

graphic

end

�� '43 '

vector

graphic

28% point

' '

vector

graphic

start

� '

vector

graphic

72% point

44 �' ' ' '

Figure 3. Score fragment to which graphical notation will
be appended.

Figure 4. Graphic to be appended.

that effectuates this typesetting, then showing several ex-
amples of this algorithm as applied to musical examples.

3.1. The Graphical Notation Linear Program

In order to frame the algorithm proposed in this subsec-
tion, consider the following problem. A composer, work-
ing with the score fragment in Figure 3, wants to super-
pose the graphic in Figure 4 such that it hits the target
points specified in Figure 5.3 That is, the vector graphic
should have exhausted 28% of its width when it reaches
the left end of the C♮ on beat two of the second measure,
and it should have exhausted 72% of its width when it
reaches the left end of the B♮ on beat one of the third
measure. Absent of any spacing algorithm, the composer
could simply cut the graphic at these points, stretch the
pieces to hit their targets, and obtain a result such as that
in Figure 6. One will notice that the different regions of
this graphic are scaled using visibly different stretch fac-
tors, and even more problematically, awkward kinks are
introduced into the figure at the borders established by the
target points.

The solution to the dilemma articulated above is for-
mulated as the following linear program. The program
takes the standard form

maximizec
T
x

subject toAx≤ b
(1)

3All graphics in this paper are assumed to be vector graphics com-
prised of lines and B́ezier curves.

'

vector

graphic

28% point

� ''43 ' '
100.0%

of total

consumable

staff length

�
3

' ' ' �'

vector

graphic

start

0.0%

of total

consumable

staff length

' '� 44 ' ' �
31.62%

of total

consumable

staff length

vector

graphic

end

'

vector

graphic

72% point

63.32%

of total

consumable

staff length

44 �

Figure 5. Target points in the original score. Note that the
requested distances between the targets do not match up
with the actual staff space consumed, thus necessitating a
stretching function for the graphic.

'
3

' ' � ' ' � �� 44 '43 '

vector

graphic

28% point

' ' � '

vector

graphic

72% point

44 �' ' ' '

Figure 6. Naive stretching mechanism that changes
stretching and contracting factors at target points, giving
an uneven look across the graphic and awkward kinks at
the target points.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

f(x)

Figure 7. Acceptable smoothing polynomial for the mu-
sical example presented in Figure 3.

where the upper rows of matrixA represent equations de-
scribing a piecewise linear polynomial that is henceforth
called a “smoothing polynomial.” The domain of the poly-
nomial represents the length of the vector graphic (nor-
malized from 0 to 1), and the integral of the polynomial
represents staff space consumed. This means that, by def-
inition, the Y value of the function at any point is the rate
of change of the consumed staff space (∆ staff space

∆ graphic length). The
goal, then is to have the pieces of the polynomial con-
strained to touch each other at target points, thus ensur-
ing that there is no disruption in the rate at which the
graphic is changing. For example, an acceptable solution
to achieve the spacing values requested in Figure 3 would
be the one shown in Figure 7. This solution has the func-
tion:

f (x)=







−2.29378561x+1.4505339 x≤ 0.28
−0.39902167x+0.92 0.28< x≤ 0.72
4.8365928x−2.84964242 0.72< x

(2)
One can further verify that the integral of the function
over the [0,1] interval yields the appropriate staff spaces

reported in Figure 5.4

∫ 0.28

0.0
(−2.29378561x+1.4505339)dx= 0.3162 (3)

∫ 0.72

0.28
(−0.39902167x+0.92)dx= 0.3170 (4)

∫ 1.0

0.72
(4.8365928x−2.84964242)dx= 0.3668 (5)

This solution to the spacing problem is not the only pos-
sible one. Multiple potential solutions stem from the fact
that there are less constraining equations (five (5) in total
– three (3) for the area under the pieces of the polyno-
mial, and two (2) to set the polynomials equal at the target
points) than there are variables in the equations that de-
scribe the polynomial (six (6) – two (2) for each of the
(3) linear equationsy = mx+ b). This mismatch means
that certain solutions will force the polynomial below 0,
as seen in Figure 8 and verified in Equations 6–9 below:

f (x)=







−17.63092847x+3.5977339 x≤ 0.28
9.36097833x−3.96 0.28< x≤ 0.72
−10.32107333x+9.24287473 0.72< x

(6)
∫ 0.28

0.0
(−17.63092847x+3.5977339)dx= 0.3162 (7)

∫ 0.72

0.28
(9.36097833x−3.96)dx= 0.3170 (8)

∫ 1.0

0.72
(−10.32107333x+9.24287473)dx= 0.3668 (9)

Anywhere the polynomial accumulates negative area, the
graphic consumes “negative” staff space, or regresses from
right to left. Preventing the polynomial from falling be-
low 0 is the reason that one needs to use a linear pro-
gram (whose constraint takes the formAx≤ b) as opposed
to a LaGrangian optimization (whose constraint takes the
form Ax= b). In the present linear program, the lower
rows of matrixA represent the inequalities necessary to
assure that each polynomial in the piecewise polynomial
stays above 0 at the target points, which guarantees via
the intermediate value theorem that the polynomial will
be positive at all points in the bounded region.

What follows is a simplified version ofAx≤ b in the
form of two equations and one inequality for target points
X = [0,x1, . . . ,xi−1,1], staff spacesY= [0,y1, . . . ,yi−1,1],5

and slopes and y-intercepts of a linear piecewise polyno-
mial MRB= [(m0,b0), . . . ,(mi ,bi)]whose boundaries along
the X-axis are the points in setX. Equation 11 represents
the constraint that adjacent pieces of the polynomial be

4Note that the staff space points from Figure 5 are normalized to
fall between 0 and 1. For example, the second integral’s result repre-
sents the staff space consumed between the 66.32% and 31.62% points
(63.32−31.62

100 = 0.3170).
50 and 1 bookend thex andy series of values to represent the initial

and terminal value for target points and staff spaces respectively.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

f(x)

Figure 8. Unacceptable smoothing polynomial for the
musical example presented in Figure 3. It attains the same
area under the curve as the acceptable solution presented
in Figure 7, but accumulates negative area.

connected. Equation 12 assures that the area under each
piece of the polynomial is equal to the appropriate amount
of staff space to be consumed between two target points.
Note that

g(a,b) =
a2−b2

2
(10)

Equation 13 guarantees that the piecewise polynomial is
positive at each target point. In order for these relations
to be turned into a linear program, the equality constraints
would have to be rewritten as inequalities using slack vari-
ables. Numerous articles and textbooks explain how these
variables may be introduced [13][19].







x1 1 −x1 −1 . . . 0 0 0 0
...

...
0 0 0 0 . . . xi−1 1 −xi−1 −1





















m0

b0
...

mi

bi















=







0
...
0






(11)







g(x1,0) x1−0 . . . 0 0
...

...
0 0 . . . g(1,xi−1) 1−xi−1





















m0

b0
...

mi

bi















=







n1−0
...

1−ni−1






(12)















0 −1 . . . 0 0
−x1 −1 . . . 0 0

...
...

0 0 . . . −1 −1





























m0

b0
...

mi

bi















�''� 3

''' ' �44

vector

graphic

28% point

' '� '43 ' ' �' ' '

vector

graphic

72% point

44 �

Figure 9. The smoothing linear program applied to the
graphic in Figure 6. Note that the graphic hits its target
points in a much smoother fashion.

≤







0
...
0






(13)

The optimization portion of the linear program — maxi-
mizec

T
x — can be designed independent of the constraint

matrix described above, and several approaches are pos-
sible. For example, one could minimize the average dis-
tance that any given point in the graphic is from where
it would have originally been if it were not stretched to
hit intermediary target points. However, the problem with
this approach is that it does not guarantee the avoidance
of local anomalies around the target points, which is what
this algorithm is supposed to eliminate. Thus, in my im-
plementation of the linear program, I have chosen instead
to minimize thesum of the absolute value of the difference
in slope of adjacent line segments. Using the slopes (m)
from Equations 11–13, this can be expressed as

min(
i−1

∑
n=0

|mn+1−mn|) (14)

Or, in other words, minimize the extent to which the slope
changes at the target points. By pushing error away from
the target points and over the entire graphic, the distortion
is less noticeable on a local level without suffering appre-
ciably on the whole, as seen in Figure 9.

The smoothing polynomial does not need to confine
itself to interpolation at target points. By further split-
ting up the piecewise polynomial into smaller lines, it can
better approximate curves of higher degrees, thus guar-
anteeing smoother transitions between rates of change in
the stretching of the graphic. In some cases this added
detail is the only way to find an acceptable solution. To
achieve the results in Figure 10, the first example must use
three times as many line segments in its smoothing poly-
nomial to arrive at a successful approximation, whereas
the second must use four times as many. Not surprisingly,
in these more computationally demanding situations, the
success of the algorithm is more apparent when compared
to an untreated graphic, as seen in Figure 11.

3.2. Alternative Approaches and Criticism

In order to achieve smooth derivatives along the piece-
wise polynomial (and thus smoother interpolation at the
target points), it would be necessary to use polynomials

'
3

' ' � ' ' � �� 44 '43 '

vector

graphic

20% point

' ' � '

vector

graphic

80% point

44 �' ' ' '

� '
3

' ' ' ' � �� 44 '43' ' � ' '

vector

graphic

90% point

44 �'

vector

graphic

10% point

' ' '

Figure 10. By adding more segments to the piecewise
smoother polynomial, more severe stretching scenarios
can be handled smoothly.

'
3

' ' � ' ' � �� 44 '43 '

vector

graphic

42% point

' ' � '

vector

graphic

58% point

44 �' ' ' '

'
3

' ' � ' ' � �� 44 '43 '

vector

graphic

42% point

' ' � '

vector

graphic

58% point

44 �' ' ' '

Figure 11. The top graphic is smoothed by a linear ap-
proximation of a quartic polynomial to avoid regressing.
Below is the same graphic without the algorithm applied.
One can see that the unevenness and kinks are more pro-
nounced that those of Figure 6, whose targets require less
stretching.

of higher degrees. As stated above, one manner of do-
ing this is by approximating non-linear curves with line
segments. Another possibility is the use of semidefinite
programming to create positive polynomials of arbitrarily
high degrees. If a polynomial is verified to be the sum
of squares over a region, then all of its values in that re-
gion will be positive. Because sum-of-squares polynomi-
als can be expressed in the formx

T
Ax, which will yield a

real symmetric matrix with nonnegative eigenvalues, their
coefficients can be solved for by traversing matrices on
the semidefinite cone [20]. While this approach can lead
to smoother results, it suffers from a number of compu-
tational and practical problems. First, matrices of simi-
lar density take longer to solve in semidefinite than linear
programming. Second, approximating non-linear poly-
nomials leads to a greater chance of rounding error than
working with a group of line segments. Lastly, and per-
haps most importantly, any greater accuracy that semidef-
inite programming affords is not visible at the orders of
resolution at which typeset music is usually printed.

Irrespective of the algorithm used, a criticism of this
approach is that it can distort the graphic so severely as
to denature the original aesthetic statement that the com-
poser intended to make with the image. It is true that,
in using this algorithm, severe stretching between target
points may cause the composer to reconsider a given graphic,
and only below a certain threshold of visual tolerance (i.e.
Figure 9) will one fail to immediately notice the stretch-
ing being applied to the image. However, because of the
algorithm’s speed and ability to be invoked directly from
a markup language,6 the composer’s decision to modify a
source graphic can be made quickly with respect to the
evolving visual output. Additionally, insofar as graph-
ics provide an opportunity for variation and transforma-
tion that is akin to that which one would find in musical
motivic manipulation, this algorithm permits an evolution
of graphical objects over scores that would be painstak-
ing to calculate, make, and remake by merging music and
graphics in a vector graphics editor. Lastly, for objects
whose graphical integrity depends on their relative spac-
ing with respect to noteheads (i.e. waveforms and spec-
trograms), this linear program provides a manner to pre-
serve the alignment of arrival points without sacrificing
the score’s horizontal layout.

3.3. Musical Examples

Having established the manner in which horizontal spac-
ing data can be harvested by a linear program to create
smoothing polynomials, I will now show some of the added
advantages that come from this approach in more devel-
oped musical contexts.

As mentioned in the first section, a major concern of
the horizontal spacing algorithm in [15] is preserving con-
tinuity of staff spacing over line breaks. Using data from

6The musical figures in this paper, for example, were made using
GNU Lilypond [15]. The linear programming solver is the simplex
method [6] as implemented by the GNU Linear Programming Kit [12].

'' ''
3 43' � �� 44 ' ' ''

vector

graphic

start

� '43 ' ' �' '44 �

¾ ' '' ' ' 86' ' �43
5

� ' '''¾

vector

graphic

2/5 point

' ' '' '' ' ''

�44
¾

�43� �

vector

graphic

end

86
9

' ' ' ''

vector

graphic

17/25 point

' ' '' '42

Figure 12. The vector graphic from above is not distorted
at the line break because of the continuity in horizontal
spacing data.

this algorithm to create a smoothing polynomial allows
graphical notation to span over line breaks without al-
tering its rate of spacing on either side of the break, as
seen in Figure 12. Furthermore, because horizontal spac-
ing calculations factor in data from all staves in a system,
graphics in different staves that have similar horizontal
target points will line align vertically as seen in Figure
13. Lastly, the same linear program implemented in the
horizontal domain is implemented in the vertical domain
in Figure 14, achieving a constancy of error distribution
along the Y-axis that further contributes to the visual unity
of the score.

4. CONCLUSION

This paper has proposed a model for the spanning of graph-
ical notation that uses data from canonical horizontal spac-
ing algorithms. By feeding this data into a linear pro-
gram that distributes stretching error over a graphic while
preventing right-to-left regressions, one can take a jolty
graphic (see Figure 6) and make it acceptably smooth (see
Figure 9). Because this approach is programmatically in-
tegrated into score markup languages, it can easily con-
trol the distribution of graphics over multiple regions of a
score. It is perhaps this aspect of the graphical notation
linear program that is most promising for future research.
As stated in the introduction, a disadvantage of using tra-
ditional horizontal spacing mechanisms is that they limit
the scope of experimentation one can do with graphics.

'�
��

��

��

'

''

'

'

Figure 13. A target point that aligns the lacuna of the
glissando figure (presented in its original form at the top
of the score) so that it arrives at the same place in all three
voices.

' ' '�' � '4
3
¾ ' '� 44 43� '44 �'' � '

3

'' '

Figure 14. A smoothing polynomial guides the graphic
along the Y-axis to intersect with the staff.

However, by generating fragments of traditional score ma-
terial that are governed by and even fed into the graphical
notation algorithm, one can eventually create the bend-
ing staves and curving beams that are characteristic of
more ambitious experiments such as Burnson’sBike Ride
or those found in Crumb’sMakrocosmos. Doing so can
achieve a sense of traditional horizontal proportionalityin
an otherwise advanced graphical aesthetic.

5. REFERENCES

[1] P. Bellini and P. Nesi, “Automatic Justification and
Line-Breaking of Music Sheets,”International Jour-
nal of Human-Computer Studies, vol. 61, pp. 104–
137, July 2004.

[2] D. Blostein and L. Haken, “Justification of Printed
Music,” Communications of the ACM, vol. 33, pp.
88–99, March 1991.

[3] W. A. Burnson, “Belle, Bonne, Sage: The Beau-
tiful, Good, Wise C++ Vector-Graphics Library
for Music Notation,” 2010. [Online]. Available:
http://bellebonnesage.sourceforge.net

[4] D. Byrd, “Music Notation by Computer,” Ph.D. dis-
sertation, Indiana University, 1984.

[5] H. Cole,Sounds and Signs. London: Oxford Uni-
versity Press, 1974.

http://bellebonnesage.sourceforge.net

[6] G. Dantzig, Linear Programming and Extensions.
Princeton: Princeton University Press, 1963.

[7] M. Gieseking, “Code-basierte Generierung interak-
tiver Notengraphik,” Ph.D. dissertation, Universität
Osnabr̈uck, 2001.

[8] J. S. Gourlay, “Spacing a Line of Music,” Depart-
ment of Computer and Information Science, The
Ohio State University, Tech. Rep. OSU-CISRC-
10/87-TR35, 1987.

[9] L. Haken and D. Blostein, “A new algorithm for hor-
izontal spacing of printed music,”Proceedings of the
International Computer Music Conference, pp. 118–
119, 1995.

[10] H. H. Hoos, “The GUIDO Notation Format:
A Novel Approach for Adequately Representing
Score-Level Music,”Proceedings of the Interna-
tional Computer Music Association, pp. 451–454,
1998.

[11] D. E. Kunth and M. F. Plass, “Breaking Paragraphs
into Lines,” Software – Practice and Experience,
vol. 11, pp. 1119–1184, November 1981.

[12] A. Makhorin, “GNU Linear Programming
Kit, version 4.45,” 2010. [Online]. Available:
http://www.gnu.org/software/glpk

[13] H. Nabli, “An Overview on the Simplex Algo-
rithm,” Applied Mathematics & Computation, vol.
210, no. 2, pp. 479–489, 2009.

[14] H.-W. Nienhuys, “Re: ICMC Paper,” Electronic
Mail, January 2011.

[15] H.-W. Nienhuys, J. Nieuwenhuizenet al., “Lily-
pond, the GNU Music Typesetter, version 2.13.47,”
2011. [Online]. Available: http://www.lilypond.org

[16] G. Read,Music Notation, A Manual of Modern
Practice. Boston: Allyn and Bacon, 1964.

[17] K. Renz, “An improved algorithm for spacing a line
of music,” Proceedings of the International Com-
puter Music Conference, pp. 475–481, 2002.

[18] T. Ross,The Art of Music Engraving and Process-
ing: A Complete Manual, Reference and Text Book
on Preparing Music for Reproduction and Print.
Miami: Hansen Books, 1970.

[19] R. I. Rothenberg,Linear Programming. New York:
North Holland, 1979.

[20] C. W. Scherer and C. W. J. Hol, “Matrix Sum-of-
Squares Relaxations for Robust Semi-Definite Pro-
grams,” Mathematical Programming, vol. 107, no.
1/2, pp. 189 – 211, 2006.

http://www.gnu.org/software/glpk
http://www.lilypond.org

	 Introduction
	 Horizontal Spacing
	 Traditional Horizontal Engraving Considerations
	 Algorithmic Horizontal Engraving

	 The Graphical Notation Algorithm
	 The Graphical Notation Linear Program
	 Alternative Approaches and Criticism
	 Musical Examples

	 Conclusion
	 References

