

FIRST STEPS IN RESEARCH AND DEVELOPMENT
ABOUT THE SUSTAINABILITY OF SOFTWARE

MODULES FOR PERFORMING ARTS

Alain Bonardi, Jérôme Barthélemy, Raffaele Ciavarella, Guillaume Boutard
IRCAM

{alain.bonardi, jerome.barthelemy, raffaele.ciavarella, guillaume.boutard}@ircam.fr

ABSTRACT

When moving from hardware device to computers on
stage at the end of the 1970’s, artists did not realize they
would sometimes be unable to reperform their works
twenty years later. Many of them now use software
modules that face important sustainability problems. In
the framework of Caspar European project, the On Line
Service Team at Ircam proposes a series of new tools to
accompany the maintenance of software modules
required by performers on stage.

1. INTRODUCTION

1.1. Historical introduction to the issue

Since the 1970’s, the field of performance arts has
quickly evolved thanks to the appearance of computers,
softwares and computerized devices that have transformed
stage practices. Whereas performers used hardware device
for all signal processing required on stage, they
progressively moved to software environments enabling
to develop personal interactive modules. This concerned
first of all music, but quickly expanded to dance, theatre,
installations, etc, as we will show below.

More than thirty years later, performers are now
developing their own software modules (they often
recruit developers in that purpose). But individual artists
as well as creation centres or institutional studios face
the same problem: the sustainability of these software
modules. They now use such graphical languages as
Max/MSP1 or PureData2 which are submitted to software
upgrades and hardware evolutions.

Many researchers, users and composers, especially in
electronic studios, have become aware of the fragility of
pieces using electronics [11]. As Nicola Bernardini and
Alvise Vidolin have noticed, the situation is quite
paradoxical [2]: “real-time/performed electro-acoustic
music (also known as live electro-acoustic music) is
currently facing a serious sustainability problem: while
its production is indeed considered very recent from the
music history point of view, several technological
generations and revolutions have gone by in the
meantime”.

This sentence may be applied to all artistic works
using realtime electronics. Being able to reperform
correctly the most important pieces previously created in

1 Proposed by Cycling’74 Company, at

http://www.cycling74.com
2 Developed by Miller Puckette, and downloadable at

http://crca.ucsd.edu/~msp/software.html

the studios of institutions becomes important for them,
since they all try to find a balance between the
constitution of a repertoire and the promotion of creation
[12], [10]. At Ircam for instance, a repertoire of nearly 60
works using software modules is now identified as a core
of music pieces considered as being interesting for future
reperformance.

Whereas preservation of music has been studied and
practiced for many years on a wide range from
manuscripts to instruments, improving the sustainability
of live electronics pieces has recently become a growing
issue of late. Several recent publications (in 2004 and
2005, [3] [6]) show that many institutions feel
concerned. A European project named Caspar3 (Cultural,
Artistic, and Scientific Knowledge for Preservation,
Access and Retrieval) has been launched in 2006,
bringing together 17 partners, including IRCAM, on the
general topic of preservation of digital data. This project
intends to address three different communities, by
developing three different testbeds: one for scientific
knowledge, one for cultural heritage, and one for
performing arts. Contrary to such projects as Faust
(http://www.grame.fr) or Integra
(http://www.integralive.org) that focus on the
development of new languages or new formalisms for
realtime signal processing, the approach in Caspar is
more transverse, trying to think of preservation solutions
applicable to existing softwares (Max/MSP, PureData).

1.2. Scope of uses of software modules on stage

Our study concerns software modules for performance
implied in all arts on stage, used for such various
activities as signal processing or symbolic calculation.
Performing arts include of course music, but also dance,
theatre, video, interactive installations, etc. They may
require human performers or not.

We give below a few examples, that are of course not
exhaustive.

Confi-
guration

Example of work

Solo
instrument and
live electronics

Anthèmes II, by Pierre Boulez, for violin and
live electronics (1997)

Soloists,
ensemble and
live electronics

Répons, by Pierre Boulez, for six soloists,
chamber ensemble and live electronics (1981-
1984)

3 One may refer to the official Website of the project:

http://www.casparpreserves.eu

Confi-
guration

Example of work

Dance and
Music
Performance

L'écarlate, dance performance designed by
Myriam Gourfink, choreographer, music by
Kasper Toeplitz (2001)

Opera with
live sound
transformations

K, music and text by Philippe Manoury
(2001)

Theatre
with live sound
transformations

Le Privilège des Chemins, by Fernando
Pessoa, stage direction by Eric Génovèse,
sound transformations by Romain Kronenberg,
2004

Theatre and
image
generation

La traversée de la nuit, by Geneviève de
Gaulle-Anthonioz, stage direction by Christine
Zeppenfeld, realtime neural networks and
multi-agent systems by Alain Bonardi, 2003

Musical and
video
performance

Sensors Sonic Sights (S.S.S.),
music/gestures/images with Atau Tanaka,
Laurent Dailleau and Cécile Babiole
(performed since 2004)

Installation Elle et la voix, virtual reality installation by
Catherine Ikam and Louis-François Fléri, music
by Pierre Charvet (2000)

Table 1. Examples of uses of software modules on
stage.

1.3. Performance works curators and designers look
for sustainability

The worse situation for all these artistic works is the
impossibility of reperformance (for various reasons) after
the creation. Therefore, institutions concerned and
composers are interested in sustainability. It
paradoxically means preserving authenticity and at the
same time enabling possibilities of evolution.

On the one hand, each time a work is played again,
performers face the issue of authenticity, trying to set a
kind of loyalty, in reference to the materials and to
previous reference performances (perhaps belonging to
opposite interpretation traditions), famous or not. This
requires the storage of results as sound samples to keep a
minimal memory of previous performances, but may be
insufficient to evaluate the reperformance. Indeed
authenticity criteria seem quite difficult to define, since
composers have different conceptions of it: musical
assistant Serge Lemouton reports how the same
processes of migration of Max/MSP patches (from NeXT
environment to Macintosh) applied to several works at
IRCAM led to various reactions: whereas composer
Philippe Manoury considered the new result as too close
to the original, composer Michael Jarrell found it too far
from the original.

On the other hand, composers often want to modify
their works, or performers intend to adapt a work to
other configurations. Maintenance of software patches is a
very difficult task, since they are not structured as
programs for instance; therefore slight modifications of
patches a few months after completing them may become
quite laborious. During an interview in September 2006,
Andrew Gerzso, who is Pierre Boulez’ musical assistant,
indicated us that important patch revisions for technical
reasons are opportunities for musical transformations.
This was for instance the case for Anthèmes II, for violin
and live electronics (1997), by Boulez, before its

recording.

2. GLOBAL PRESENTATION OF
SOFTWARES FOR PERFORMERS

Either hardware (analogical device) or software (patches),
active modules provide control and signal processing
functions. Musicians nowadays intensively use such
graphical languages as Max/MSP or PureData software
to implement the required processes.

End-user configuration patches using proprietary
software and/or hardware technologies, and binary
proprietary file formats, are especially concerned by
obsolescence. For instance, Max/MSP uses by default a
proprietary binary file format; there is also a text file
format, which is quite difficult to interpret since it works
like a script language, not as a structured description of
the process. Moreover, it has evolved for nearly twenty
years by adding blocks of new functions and managing
exceptions and aliases. PureData only proposes text file
format very similar to the one in Max/MSP. Here is for
instance the code of the Max/MSP patch that adds two
sinusoids.

max v2;
#N vpatcher 428 395 883 739;
#P window setfont "Sans Serif" 9.;
#P newex 130 259 31 196617 dac~;
#P newex 130 212 27 196617 *~;
#P newex 130 172 27 196617 +~;
#P user ezdac~ 283 129 327 162 0;
#P newex 199 129 64 196617 cycle~ 200.;
#P newex 130 129 64 196617 cycle~ 100.;
#P connect 0 0 3 0;
#P connect 3 0 4 0;
#P connect 4 0 5 0;
#P fasten 1 0 3 1 204 159 152 159;
#P pop;

Example of a Max/MSP code to add two sinusoids.

Another difficulty to achieve sustainability is the
division between the graphical representation of signal
processing functions and the particular mode of running
of these software modules. Whereas the graphical scheme
on screen or even the description in the text file format
may suggest parallel running, the effective running of a
patch is never parallel but always sequential.

Extreme case: what can happen when maintaining such
a complex patch as the one just below?

Figure 2. A complex patch intentionally provided by
Olivier Pasquet, musical assistant at IRCAM.

In such a situation, operations done on the patch,
like deleting and recreating objects, deleting and
recreating links, or manual move of objects on the
screen, may cause dysfunctions: since the sequencing of
processes depends on the rules that are followed by the
scheduler to execute the sequences, these rules being not
documented. For this reason, even switching of two
objects can have consequences. It is important to notice
that no information about the sequencing appears neither
on the screen nor in the text file. The default running
mode of the software is not described anywhere according
to an external formalism.

3. STRATEGIES FOR SUSTAINABILITY

In the framework of Caspar project, the On Line Service
Team at IRCAM has evaluated several strategies to face
sustainability and re-performance requirements.

From one hand, the simplest way to make an artistic
work re-performable is to keep safe all that was used in
the first performance, including the knowledge to achieve
that purpose. This strategy leads to the institution of a
sort of “museum of artistic works” and needs all the
related cares (including maintenance, periodic test of
devices, periodic retraining of technical personnel, etc.).

On the other hand, the best solution would be to save
only the meaning that is inside an artistic work, so that
it could be re-performed at any time with the technology
of the moment. This approach introduces to the use of
new languages needed to describe artistic works [13] and
doesn't solve the problem of the already produced works.
In the same perspective, some researchers as Yann
Orlarey have explored mathematical formalization of
signal processing [5] [7]. Often, especially for the early
works, people were specifically trained for the
performance and all the informations where transmitted
orally. Nowadays some authors, performers and
technicians are no longer available to reconstruct the
original environment. This lack of contents makes it
impossible to “translate” intentions into a virtual
language. So the strategy is, maybe, the best one for
future productions, but only a partial solution for the
whole problem. On this, here at IRCAM, we are
spending a lot of research, in fact, the instruments to
obtain the goal are still to be invented.

Between the first strategy, conservative, and the
second, innovative, some other ways can be followed.

One way may be to virtualize hardware, using
emulators, and leaving the original software untouched.
This is good because the re-performance will use the
most recent available hardware but need to develop an
emulator for every used device of the past and not solve
the problem of knowledge about works.

Another way is to “port” the artistic work on more
recent environments every time the last used is near to
become obsolete. This solution only delays the problem
but does not solve it, in fact, the author must be part of
every new porting process. Generally he introduces
changes into the new work. So, a new artistic work is
generated and it has to be conserved too.

Finally, is to be considered the so called “problem of
authenticity”. It means that every time we modify
something into an existing artistic work, we have to

prove that the new product is “equivalent” to the
original. This can only be achieved using a standard
methodology, with absolute physical measures and
throw the intervention of reference “validators” (authors,
performers, musical assistants, etc.).

Figure 3. The simplified schema of the digital
implementation for an artistic work.

4. DEVELOPING TOOLS TO
REINFORCE SUSTAINABILITY

4.1. Parsing and repository tools

We have first developed a set of tools named Patcher
Tools based on a parser of Max/MSP modules enabling
to give the whole structure of a patch and its sub-
patchers.

For instance, let us consider the Max/MSP patch of
Jupiter, a work for flute and live electronics composed
by Philippe Manoury in 1987, and regularly performed
since its creation4. Here is a screenshot of the top patch:

Figure 4. A screenshot of the main patch of Jupiter by
Philippe Manoury (musical assistant: Serge Lemouton)

4 This is particularly due to the existence of the MUSTICA data

base, where many elements to perform the piece may be
downloaded [1].

A - APPLICATION

A.2

CUSTOM LIB

A.1

APPLICATION

B - ENGINE

B.2

MAX/MSP

B.1

MAX/MSP LIB

C - COMPUTER

C.3

COMPUTER

C.1

OS

D.1

EXTERNALS

The boxes in the left column are sub-patches that
make together a kind of electronic orchestra: ‘reverb’ is
the module of reverberation, ‘fshift’ is the frequency
shifter (a signal process that adds and subtracts a certain
frequency to the fundamental of the input signal), and so
on. The horizontal series of figures (from 0 to 13) at the
top of the patch are buttons enabling to trigger the
beginning of the corresponding sections in Jupiter. Other
boxes are for instance faders to adjust sound levels (input
and output) or start/stop buttons.

To have an overview of the whole hierarchy of patches
is not possible within Max/MSP. This is our first
motivation to develop the PatcherMap tool, which can
provide it. Another important aspect is to check the set
of resources required by the patch. Figure 4 shows
various lists: on the left, the list of abstractions used
(they are the files required) ; the list of externals that are
third-party objects to complement Max/MSP objects. At
the bottom of the screen, the list of missing references (it
means sub-patches referenced but not found on the
computer where the patch is run), the list of script files
used, and the list of storage files saved or read by the
patch. In the center of the window, the hierarchy is
displayed as a tree, with the possibility of showing only
a part of it (by limiting the depth or the width to be
displayed).

Figure 5. A screenshot of the PatcherMap application
showing the hierarchy of modules of Jupiter by
Philippe Manoury, at level one.

4.2. Components

For externals components such as those generally known
in the community as Externals and Abstractions, it is
needed to document their features (version, date of last
update, etc.), as well as their behaviour, and to develop a
specific repository.

For this purpose a portal architecture containing
several portlets is considered. The repository would be a
mean to store objective informations, as the features
listed before, aggregate external sources data and,
moreover, grab subjective informations. The last ones
ideally being handled by musical assistants, through one
or several wiki portlets, that will define informations
such as migration information (heuristics...),
comparisons, comments...

Figure 6. A first prototype of the portal for
components

In addition to the information provided, queries will
be possible on the content for the purpose of localization
of, for instance, a newer version of a component, or a
version of the same component on a different operating
system… Hash values will be provided in order to
enable precise identification of the required components.

Moreover, it will become possible to analyze the text
provided as comments in order to build thesauruses,
dictionary of terms, and relationship between elements.
These different elements will enable the building of a
specialized ontology of digital instruments.

4.3. Display of information

The hierarchy can then be displayed thanks to GraphViz,
an open source and standard application for the
visualization of hierarchies represented by .dot files. It
shows dependencies between different modules (figure 7).

Figure 7. An extract of the screenshot of the export of
Jupiter parsing to GraphViz open application.

These tools may be used to have an overview of patches
during their reimplementation but also for the evaluation
of scenarios.

4.4. Software engineering tools

Among the tools developed or planned to give right
structuring to the problem we can distinguish two
different classes: the ones for static code analysis and the
others for run-time performance diagnosis.

The static code analysis class of tools is intended to
provide, in structured schemes, further informations
about the inside of an artistic work, including
environment description, project structure, file structure
and catalogs for libraries. We developed an “intelligent”
code coverage analysis technique, we think to use it to
identify code holes, lacks of consistency, complexity and

styles of writing. All the collected informations, as
mentioned, will be fit into the repository and will be
available as meta-data of the work.

Figure 8. Static analysis IDE.

The run-time tools will provide the way for both
right dimensioning of hardware and monitoring all
aspects of performances. Based on professional profilers
technology, they monitor global parameters like memory
and cpu, but can furnish detailed values on every
function running inside the project (number of instances,
parameters passing overhead, memory usage, cpu usage,
etc.) The tools are specially oriented to musical
processing, so directly provide complex structures like
buses, pipe-lines and special format meaning.

Figure 9. Profiler.

CONCLUSION

We have shown how artists now experiment the issue
of sustainability of the software modules they use in their
performances on stage. The main challenge is the
possibility of reperformance several years after the
creation, though computers and softwares evolve very
quickly.

In the framework of Caspar european project, Ircam has
started developing tools to provide some help for
sustainability: parsing tools, software engineering ones
(static and dynamic analysis).

But the field of research is wide, and a lot remains to
be done, on both aspects: sustainability of previous

works, and sustainability of undergoing creations. They
both require the implementation of human-to-machine
processes to achieve a minimal sustainability with a
minimal authenticity.

Acknowledgments
This work is partially supported by European
Community under the Information Society Technologies
(IST) programme of the 6th FP for RTD - project
CASPAR contract IST-033572. The author is solely
responsible for the content of this paper. It does not
represent the opinion of the European Community, and
the European Community is not responsible for any use
that might be made of data appearing therein.
Authors' addresses: Alain Bonardi, Jérôme Barthélemy,
STMS, Ircam-CNRS, Institut de Recherche et de
Coordination Acoustique/Musique – 1, place Igor-
Stravinsky – 75004 Paris

REFERENCES

[1] Bachimont, B., Blanchette, J.-F., Gerszo, A.,
Swetland, A., Lescurieux, O., Morizet-
Mahoudeaux, P., Donin, N., Teasley, J. 2003.
Preserving Interactive Digital Music: A Report on
the MUSTICA Research Initiative. In Proceedings
of the Third International Conference on WEB
Delivering of Music (WEB’03), Leeds, England,
2003.

[2] Bernardini, N., and Vidolin, A. 2005. Sustainable
Live Electro-acoustic Music. In Proceedings of the
International Sound and Music Computing
Conference, Salerno, Italy, 2005.

[3] Bosma, H. 2005. Documentation and Publication of
Electroacoustic Compositions at NEAR. In
Proceedings of the Electroacoustic Music Studies
Network International Conference (EMS 05),
Montreal, Canada, 2005.

[4] Bullock, J., and Coccioli, L. 2005. Modernising
Live Electronics Technology in the Works of
Jonathan Harvey. In Proceedings of the
International Computer Music Conference,
Barcelona, Spain, 2005.

[5] Graef, A., Kersten, S., Orlarey, Y. 2006. DSP
Programming with Faust, Q and SuperCollider. In
Proceedings of Linux Audio Conference 2006,
Karlsruhe, Allemagne, 2006.

[6] Longton, M. 2004. Record Keeping Practices of
Composers, a survey (revised in 2004). InterPares 2
Website, at http://www.interpares.org, accessed
October 2006.

[7] Orlarey, Y., Fober, D., Letz, S. 2002. An Algebra
for Block Diagram Languages. In Proceedings of
International Computer Music Conference ICMA
2002, Göteborg, Sweden, 2002.

[8] Puckette, M. 2004. New Public-Domain
Realizations of Standard Pieces for Instruments
and Live Electronics. In Proceedings of the
International Computer Music Conference, Miami,
2004.

[9] Risset, J.-C., Arfib, D., De Sousa Dias, A., Lorrain,

D., Pottier, L. 2002. De Inharmonique à Resonant
Sound Spaces. In Proceedings of the Journées
d'Informatique Musicale, AFIM, Marseille, Gmem,
2002.

[10] Roeder, J. 2006. Preserving Authentic
Electroacoustic Music: the InterPARES Project. In
Proceedings of the IAML-IASA Congress 2006,
Oslo, Norway, 2006.

[11] Teruggi, D. 2001. Preserving and Diffusing.
Journal of New Music Research, vol. 30, n. 4,
2001.

[12] Tiffon, V. 2005. Les musique mixtes: entre
pérennité et obsolescence. Revue Musurgia, XII/3,
Paris, 2005.

[13] Music Notation Journal, Fall, 1986, 4(2) pp. 47-48.

